Carbon-Based Polymer Nanocomposite Membranes for Desalination

Author(s):  
Vahid Vatanpour ◽  
Mahdie Safarpour
2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Sadaf Noamani ◽  
Shirin Niroomand ◽  
Masoud Rastgar ◽  
Mohtada Sadrzadeh

Abstract Increasing oil contaminants in water is one of the major environmental concerns due to negative impacts on human health and aquatic and terrestrial ecosystems. The objective of this review paper is to highlight recent advances in the application carbon-based polymer nanocomposite membranes for oily wastewater treatment. Carbon-based nanomaterials, including graphene and graphene-oxide (GO), carbon nanotubes (CNTs), and carbon nanofibers (CNFs), have gained tremendous attention due to their unique physicochemical properties, such as excellent chemical and mechanical stability, electrical conductivity, reinforcement capability, and their antifouling properties. This review encompasses innovative carbon-based membranes for effective oil–water separation and provides a critical comparison of these membranes regarding the permeation flux, wettability, and flux recovery. The current challenges for the successful development of carbon-based nanocomposite membranes and opportunities for future research are also discussed.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 139
Author(s):  
Oluranti Agboola ◽  
Ojo Sunday Isaac Fayomi ◽  
Ayoola Ayodeji ◽  
Augustine Omoniyi Ayeni ◽  
Edith E. Alagbe ◽  
...  

Globally, environmental challenges have been recognised as a matter of concern. Among these challenges are the reduced availability and quality of drinking water, and greenhouse gases that give rise to change in climate by entrapping heat, which result in respirational illness from smog and air pollution. Globally, the rate of demand for the use of freshwater has outgrown the rate of population increase; as the rapid growth in town and cities place a huge pressure on neighbouring water resources. Besides, the rapid growth in anthropogenic activities, such as the generation of energy and its conveyance, release carbon dioxide and other greenhouse gases, warming the planet. Polymer nanocomposite has played a significant role in finding solutions to current environmental problems. It has found interest due to its high potential for the reduction of gas emission, and elimination of pollutants, heavy metals, dyes, and oil in wastewater. The revolution of integrating developed novel nanomaterials such as nanoparticles, carbon nanotubes, nanofibers and activated carbon, in polymers, have instigated revitalizing and favourable inventive nanotechnologies for the treatment of wastewater and gas separation. This review discusses the effective employment of polymer nanocomposites for environmental utilizations. Polymer nanocomposite membranes for wastewater treatment and gas separation were reviewed together with their mechanisms. The use of polymer nanocomposites as an adsorbent for toxic metals ions removal and an adsorbent for dye removal were also discussed, together with the mechanism of the adsorption process. Patents in the utilization of innovative polymeric nanocomposite membranes for environmental utilizations were discussed.


2009 ◽  
Vol 34 (9) ◽  
pp. 3977-3982 ◽  
Author(s):  
Anshu Sharma ◽  
Sumit Kumar ◽  
Balram Tripathi ◽  
M. Singh ◽  
Y.K. Vijay

2021 ◽  
pp. 131181
Author(s):  
Samy Yousef ◽  
Justas Eimontas ◽  
Nerijus Striūgas ◽  
Alaa Mohamed ◽  
Mohammed AliAbdelnaby

2018 ◽  
Vol 8 (7) ◽  
pp. 1181 ◽  
Author(s):  
Svetlana Kononova ◽  
Galina Gubanova ◽  
Eleonora Korytkova ◽  
Denis Sapegin ◽  
Katerina Setnickova ◽  
...  

Based on the results of research works reflected in the scientific literature, the main examples, methods and approaches to the development of polymer inorganic nanocomposite materials for target membranes are considered. The focus is on membranes for critical technologies with improved mechanical, thermal properties that have the necessary capabilities to solve the problems of a selective pervaporation. For the purpose of directional changes in the parameters of membranes, effects on their properties of the type, amount and conditions of nanoparticle incorporation into the polymer matrix were analyzed. An influence of nanoparticles on the structural and morphological characteristics of the nanocomposite film is considered, as well as possibilities of forming transport channels for separated liquids are analyzed. Particular attention is paid to a correlation of nanocomposite structure-transport properties of membranes, whose separation characteristics are usually considered within the framework of the diffusion-sorption mechanism.


Author(s):  
I.G. Wenten ◽  
K. Khoiruddin ◽  
G.T.M. Kadja ◽  
Rino R. Mukti ◽  
Putu D. Sutrisna

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1186 ◽  
Author(s):  
Mahdi ◽  
Kumar ◽  
Goswami ◽  
Perdicakis ◽  
Shankar ◽  
...  

Polyethersulfone (PES) is a polymeric permeable material used in ultrafiltration (UF) membranes due to its high thermomechanical and chemical stability. The hydrophobic nature of PES membranes renders them prone to fouling and restricts the practical applications of PES in the fabrication of water treatment membranes. The present study demonstrates a non-solvent-induced phase separation (NIPS) approach to modifying PES membranes with different concentrations of discrete TiO2 nanotubes (TNTs). Zeta potential and contact angle measurements showed enhanced hydrophilicity and surface negative charge in TNTs/PES nanocomposite membranes compared to unmodified PES membranes. To discern the antifouling and permeation properties of the TNTs/PES membranes, steam assisted gravity drainage (SAGD) wastewater obtained from the Athabasca oil sands of Alberta was used. The TiO2 modified polymer nanocomposite membranes resulted in a higher organic matter rejection and water flux than the unmodified PES membrane. The addition of discrete TNTs at 1 wt% afforded maximum water flux (82 L/m2 h at 40 psi), organic matter rejection (53.9%), and antifouling properties (29% improvement in comparison to pristine PES membrane). An enhancement in fouling resistance of TNTs/PES nanocomposite membranes was observed in flux recovery ratio experiments.


Sign in / Sign up

Export Citation Format

Share Document