sorption mechanism
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 52)

H-INDEX

28
(FIVE YEARS 7)

2021 ◽  
Vol 37 (6) ◽  
pp. 1350-1358
Author(s):  
Mirvari Khalig Hasanova

Graft copolymers of natural polysaccharides chitosan (Chs), gummi-arabic (GA) and arabinogalactan (AG) were synthesized with N-vinylpyrrolidone (VPr) (4-vinylpyridine and N-vinylpyrrolidone used as comonomers for chitosan grafting), and then pH-sensitive hydrogels were designing by cross-linked them with N,N-methylene-bis-acrylamide. Effective sorption of doxycycline from aqueous solutions with water-swelling gels has been studied experimentally. The effect of gel dose, initial concentration of doxycycline, pH medium and solution ionic strength of the sorption rate and capacity of the antibiotic was systematically studied. The surface and volume absorption kinetics and isotherms of the process have also been investigated. It was found that the max sorption capacity for swellable gels varies between Chs-graft-VPr/4VPAG/graft-VPrGA/graft-VPr. It has been shown that the sorption mechanism is mainly dominated by physical sorption and to some extent hydrogen bonds and electrostatic interactions.


2021 ◽  
Vol 13 (19) ◽  
pp. 10673
Author(s):  
Jiatao Dang ◽  
Hui Wang ◽  
Chongqing Wang

Heavy metals pollution receives worldwide attention due to great toxicity, significant bio-accumulation and non-biodegradability. Adsorption is a promising technique for removing heavy metals from wastewater. Adsorption of zinc (Zn(II)) from aqueous solution was investigated by functionalized lignocellulose derived from fallen leaves. Alkalized lignocellulose (AC), xanthated lignocellulose (XC) and carboxylated lignocellulose (CC) were characterized by Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of sorbent dosage, solution pH, sorption time and initial Zn(II) concentration on Zn(II) sorption was investigated by single-factor experiment. Sorption kinetics, isotherms and thermodynamics were examined to reveal sorption mechanism. The sorption capacity and removal rate remarkably depend on experimental variables. Zn(II) sorption onto AC, XC and CC is well described by the pseudo second order kinetics and Langmuir isotherm. The sorption process is fast, reaching sorption equilibrium at 30 min. The maximum sorption capacity of Zn(II) onto CC is 46.49 mg/g, higher than that onto AC, XC and other reported sorbents. Thermodynamic parameters indicate that Zn(II) sorption is a spontaneous process. Sorption mechanism is majorly attributed to surface complexation. This work shows the feasibility of removing toxic Zn(II) from aqueous solution by locally available biomass, providing a sustainable approach for wastewater treatment.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3541
Author(s):  
Ion Ion ◽  
Daniela Bogdan ◽  
Monica Maria Mincu ◽  
Alina Catrinel Ion

In this manuscript an improved sorbent based on modified exfoliated carbon nanoplatelets, applied in the removal of ammonium from aqueous samples, is presented. This sorbent showed better efficiency in comparison with the previous one obtained in our group for ammonium removal, the values of the maximum sorption capacity being improved from 10 to 12.04 mg/g. In terms of kinetics and sorption characteristic parameters, their values were also improved. Based on these results, a sorption mechanism was proposed, taking into account ion-exchange and chemisorption processes at the surface of the oxidized exfoliated carbon nanoplatelets. Future applications for simultaneous removal of other positive charged contaminants from natural waters might be possible.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2899
Author(s):  
Natalya V. Efimova ◽  
Alla P. Krasnopyorova ◽  
Galina D. Yuhno ◽  
Dmitry S. Sofronov ◽  
Mirosław Rucki

In the paper, investigation results of the uptake efficiency of radionuclides 60Co, 90Sr, and 137Cs dissolved in water onto iron oxides α-Fe2O3 and Fe3O4 are presented. It was found that sorption efficiency increased for higher pH values. Independent of the oxide nature, the uptake characteristics are the best toward 60Co and the worst toward 137Cs, forming the row as follows: 60Co > 90Sr > 137Cs. The highest sorption ability at pH 9 was found for magnetite Fe3O4, which was 93%, 73%, and 26% toward 60Co, 90Sr, and 137Cs, respectively, while the respective percentages for hematite α-Fe2O3 were 85%, 41%, and 18%. It was assumed that the main sorption mechanism was ion exchange. That may explain some decrease of the sorption efficiency in drinking water due to the interfering presence of magnesium and calcium cations. The obtained results indicated the feasibility of the tested sorbents and their merits, especially in terms of relatively high uptake coefficients, low costs, availability, and lack of toxicity.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2915
Author(s):  
Weronika Sofińska-Chmiel ◽  
Dorota Kołodyńska ◽  
Agnieszka Adamczuk ◽  
Aleksander Świetlicki ◽  
Marta Goliszek ◽  
...  

The aim of the presented research was to investigate the mechanism of sorption of Cu(II) ions on the commercially available Purolite S 940 and Purolite S 950 chelating ion exchangers with the aminophosphonic functional groups. In order to understand better the sorption mechanism, the beads were cut with an ultramicrotome before and after the Cu(II) ion sorption process. The cut beads were examined by scanning electron microscopy (SEM) with an EDX detector. The performed linear profiles of the elemental composition allowed us to examine the depth with which the sorbed metal penetrates into. For further investigations concerning the mechanism of the sorption process, the Fourier transform infrared spectroscopy (FTIR) analysis using the attenuated total reflectance (ATR) technique and the X-ray photoelectron spectroscopy (XPS) methods have been used. The comparison of FTIR and XPS spectra before and after the sorption of Cu(II) ions showed that free electron pairs from nitrogen and oxygen in the aminophosphonic functional groups participate in the process of copper ion sorption. In addition, the microscopic studies suggested that the process of ion exchange between Na(I) ions and sorbed Cu(II) ions takes place on the Purolite S 940 and Purolite S 950. This study concerning the in-depth understanding the of Cu(II) sorption mechanism, using modern analytical tools and research methods could be very useful for its further modifications leading to the improvement of the process efficiency.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1420
Author(s):  
Anthi S. Stefanarou ◽  
Constantinos V. Chrysikopoulos

Formaldehyde (FA) is an extremely active compound that is widely used in numerous applications. Given that FA is a known carcinogen, it is essential to remove it from the environment. Titanium dioxide (TiO2), due to its special physicochemical properties, is a promising adsorbent for the removal of specific organic compounds from aqueous solutions. In this study, the interaction of TiO2 with FA in the presence and absence of quartz sand, the most common mineral on the Earth’s surface, was investigated under static and dynamic (batch) conditions, at 25 °C. The experimental data suggested that the sorption of FA onto TiO2 can be described adequately by a pseudo-second order kinetic model, indicating that the main sorption mechanism was chemisorption. It was observed that the combination of TiO2 and quartz sand could1 lead up to effective removal of FA from aqueous samples.


Sign in / Sign up

Export Citation Format

Share Document