Factors of population variation in sex estimation methodology

Author(s):  
Douglas H. Ubelaker ◽  
Cassandra M. DeGaglia
2019 ◽  
Author(s):  
Zac Wylde ◽  
Foteini Spagopoulou ◽  
Amy K Hooper ◽  
Alexei A Maklakov ◽  
Russell Bonduriansky

Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal age can affect offspring longevity as strongly as maternal age does, and that breeding age effects can interact over two generations in both matrilines and patrilines. We manipulated maternal and paternal ages at breeding over two generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of parental and grandparental ages at breeding on descendants’ mortality rate and lifespan in both matrilines and patrilines. These breeding age effects were not modulated by grandparental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute substantially to intra-population variation in mortality and longevity.


Author(s):  
Diana Toneva ◽  
Silviya Nikolova ◽  
Gennady Agre ◽  
Dora Zlatareva ◽  
Vassil Hadjidekov ◽  
...  

Author(s):  
Anna C. Rivara ◽  
Margaret Corley ◽  
Courtney C. Choy ◽  
Rachel L. Duckham ◽  
Alysa Pomer ◽  
...  

2020 ◽  
Author(s):  
Hong-Liang Lu ◽  
Yan-Fu Qu ◽  
Hong Li ◽  
Xiang Ji

Abstract Phenotypic plasticity and local adaptation are viewed as the main factors that result in between-population variation in phenotypic traits, but contributions of these factors to phenotypic variation vary between traits and between species and have only been explored in a few species of reptiles. Here, we incubated eggs of the Chinese skink (Plestiodon chinensis) from 7 geographically separated populations in Southeast China at 3 constant temperatures (24, 28, and 32 °C) to evaluate the combined effects of clutch origin, source population, and incubation temperature on hatchling traits. The relative importance of these factors varied between traits. Nearly all examined hatchling traits, including body mass, snout–vent length (SVL), tail length, head size, limb length, tympanum diameter, and locomotor speed, varied among populations and were affected by incubation temperature. Measures for hatchling size (body mass and SVL) varied considerably among clutches. Source population explained much of the variation in hatchling body mass, whereas incubation temperature explained much of the variation in other examined traits. Our results indicate that between-population variation in hatchling traits of P. chinensis likely reflects the difference in natural incubation conditions and genetic divergence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aysun Urhan ◽  
Thomas Abeel

AbstractCoronavirus disease 2019 (COVID-19) has emerged in December 2019 when the first case was reported in Wuhan, China and turned into a pandemic with 27 million (September 9th) cases. Currently, there are over 95,000 complete genome sequences of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19, in public databases, accompanying a growing number of studies. Nevertheless, there is still much to learn about the viral population variation when the virus is evolving as it continues to spread. We have analyzed SARS-CoV-2 genomes to identify the most variant sites, as well as the stable, conserved ones in samples collected in the Netherlands until June 2020. We identified the most frequent mutations in different geographies. We also performed a phylogenetic study focused on the Netherlands to detect novel variants emerging in the late stages of the pandemic and forming local clusters. We investigated the S and N proteins on SARS-CoV-2 genomes in the Netherlands and found the most variant and stable sites to guide development of diagnostics assays and vaccines. We observed that while the SARS-CoV-2 genome has accumulated mutations, diverging from reference sequence, the variation landscape is dominated by four mutations globally, suggesting the current reference does not represent the virus samples circulating currently. In addition, we detected novel variants of SARS-CoV-2 almost unique to the Netherlands that form localized clusters and region-specific sub-populations indicating community spread. We explored SARS-CoV-2 variants in the Netherlands until June 2020 within a global context; our results provide insight into the viral population diversity for localized efforts in tracking the transmission of COVID-19, as well as sequenced-based approaches in diagnostics and therapeutics. We emphasize that little diversity is observed globally in recent samples despite the increased number of mutations relative to the established reference sequence. We suggest sequence-based analyses should opt for a consensus representation to adequately cover the genomic variation observed to speed up diagnostics and vaccine design.


2016 ◽  
Vol 26 (7) ◽  
pp. 2086-2102 ◽  
Author(s):  
Simone Vincenzi ◽  
Marc Mangel ◽  
Dusˇan Jesensˇek ◽  
John C. Garza ◽  
Alain J. Crivelli

Sign in / Sign up

Export Citation Format

Share Document