Effect of high-pressure thermal sterilization (HPTS) on the reduction of food processing contaminants (e.g., furan, acrylamide, 3-MCPD-esters, HMF)

Author(s):  
Robert Sevenich ◽  
Cornelia Rauh ◽  
Beverly Belkova ◽  
Jana Hajslova
2013 ◽  
Vol 20 ◽  
pp. 42-50 ◽  
Author(s):  
Robert Sevenich ◽  
Florian Bark ◽  
Colin Crews ◽  
Warwick Anderson ◽  
Céline Pye ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 92-101
Author(s):  
Guanghui Xia ◽  
Xinhua Li ◽  
Zhen Zhang ◽  
Yuhang Jiang

Abstract Polygonatum odoratum (Mill.) Druce (POD) is a natural plant widely used for food and medicine, thanks to its rich content of a strong antioxidant agent called homoisoflavones. However, food processing methods could affect the stability of POD flavones, resulting in changes to their antioxidant activity. This study attempts to evaluate the antioxidant activity of POD flavones subject to different processing methods and determines which method could preserve the antioxidant activity of POD flavones. Therefore, flavones were extracted from POD samples, which had been treated separately with one of the four processing methods: extrusion, baking, high-pressure treatment, and yeast fermentation. After that, the antioxidant activity of the flavones was subject to in vivo tests in zebrafish embryos. The results show that yeast fermentation had the least disruption to the antioxidant activity of POD flavones, making it the most suitable food processing method for POD. By contrast, extrusion and high-pressure treatment both slightly weakened the antioxidant activity of the flavones and should be avoided in food processing. The research results provide a reference for the development and utilization of POD and the protection of its biological activity.


2009 ◽  
Vol 19 (12) ◽  
pp. 2203-2229 ◽  
Author(s):  
J. A. INFANTE ◽  
B. IVORRA ◽  
Á. M. RAMOS ◽  
J. M. REY

High Pressure (HP) Processing has turned out to be very effective in prolonging the shelf life of some food. This paper deals with the modelling and simulation of the effect of the combination of high pressure and thermal treatments on food processing, focusing on the inactivation of certain enzymes. The behavior and stability of the proposed models are checked by various numerical examples. Furthermore, various simplified versions of these models are presented and compared with each other in terms of accuracy and computational time. The models developed in this paper provide a useful tool to design suitable industrial equipments and optimize the processes.


2021 ◽  
Author(s):  
S. Tikhonov ◽  
N. Tikhonova ◽  
V. Lazarev ◽  
N. Zhang

Sign in / Sign up

Export Citation Format

Share Document