A new chaotic system without linear term, its backstepping control, and circuit design

Author(s):  
Viet-Thanh Pham ◽  
Sundarapandian Vaidyanathan ◽  
Ahmad Taher Azar ◽  
Vo Hoang Duy
Author(s):  
Aceng Sambas ◽  
Mustafa Mamat ◽  
Ayman Ali Arafa ◽  
Gamal M Mahmoud ◽  
Mohamad Afendee Mohamed ◽  
...  

<p>A new chaotic system with line equilibrium is introduced in this paper. This system consists of five terms with two transcendental nonlinearities and two quadratic nonlinearities. Various tools of dynamical system such as phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, bifurcation diagram and Poincarè map are used. It is interesting that this system has a line of fixed points and can display chaotic attractors. Next, this paper discusses control using passive control method. One example is given to insure the theoretical analysis. Finally, for the  new chaotic system, An electronic circuit for realizing the chaotic system has been implemented. The numerical simulation by using MATLAB 2010 and implementation of circuit simulations by using MultiSIM 10.0 have been performed in this study.</p>


2011 ◽  
Vol 25 (32) ◽  
pp. 4395-4409 ◽  
Author(s):  
SARA DADRAS ◽  
HAMID REZA MOMENI

In this paper, we have proposed a novel three-dimensional Lorenz-like chaotic system. Some basic properties of the system, such as dynamical behaviors, bifurcation diagram. Lyapunov exponents and Poincare mapping are investigated either analytically or numerically. Furthermore, the control problem of the new chaotic system was studied via nonlinear backstepping method. The single backstepping control input was designed according to Lyapunov stability criterion. Numerical simulations are carried out in order to demonstrate the effectiveness of the proposed control design.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 670 ◽  
Author(s):  
Tomasz Kapitaniak ◽  
S. Mohammadi ◽  
Saad Mekhilef ◽  
Fawaz Alsaadi ◽  
Tasawar Hayat ◽  
...  

In this paper, we introduce a new, three-dimensional chaotic system with one stable equilibrium. This system is a multistable dynamic system in which the strange attractor is hidden. We investigate its dynamic properties through equilibrium analysis, a bifurcation diagram and Lyapunov exponents. Such multistable systems are important in engineering. We perform an entropy analysis, parameter estimation and circuit design using this new system to show its feasibility and ability to be used in engineering applications.


2019 ◽  
Vol 11 (7) ◽  
pp. 168781401986654 ◽  
Author(s):  
Muhammad Altaf Khan

The aim of this article is to analyze the dynamics of the new chaotic system in the sense of two fractional operators, that is, the Caputo–Fabrizio and the Atangana–Baleanu derivatives. Initially, we consider a new chaotic model and present some of the fundamental properties of the model. Then, we apply the Caputo–Fabrizio derivative and implement a numerical procedure to obtain their graphical results. Further, we consider the same model, apply the Atangana–Baleanu operator, and present their analysis. The Atangana–Baleanu model is used further to present a numerical approach for their solutions. We obtain and discuss the graphical results to each operator in details. Furthermore, we give a comparison of both the operators applied on the new chaotic model in the form of various graphical results by considering many values of the fractional-order parameter [Formula: see text]. We show that at the integer case, both the models (in Caputo–Fabrizio sense and the Atangana–Baleanu sense) give the same results.


2009 ◽  
Vol 20 (02) ◽  
pp. 323-335 ◽  
Author(s):  
GUOSI HU ◽  
BO YU

Recently, there are many methods for constructing multi-wing/multi-scroll or hyperchaotic attractors; however, it has been noticed that the attractors with both multi-wing topological structure and hyperchaotic characteristic rarely exist. A new chaotic system, obtained by making the change on coordinate to the Hu chaotic system, can generate very complex attractors with four-wing topological structure and three positive Lyapunov exponents over a wide range of parameters. The influence of parameters varying to system dynamics is analyzed, computer simulations and bifurcation analysis is also verified in this paper.


2007 ◽  
Vol 56 (11) ◽  
pp. 6230
Author(s):  
Cai Guo-Liang ◽  
Tan Zhen-Mei ◽  
Zhou Wei-Huai ◽  
Tu Wen-Tao

Sign in / Sign up

Export Citation Format

Share Document