Core–shell nanomaterials for infection and cancer therapy

Author(s):  
Bianca Boarca ◽  
Iulia Ioana Lungu ◽  
Alina Maria Holban
Keyword(s):  
Author(s):  
Somia Tomane ◽  
Claire Wilhelm ◽  
Souhir Boujday ◽  
Alexandre Fromain ◽  
Antoine Miche ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Qing Xu ◽  
Danyang Li ◽  
Haijun Zhou ◽  
Biaoqi Chen ◽  
Junlei Wang ◽  
...  

We describe the synthesis of MnO2-coated porous Pt@CeO2 core–shell nanostructures (Pt@CeO2@MnO2) as a new theranostic nano-platform. The porous Pt cores endow the core–shell nanostructures with high photothermal conversion efficiency (80%)...


2014 ◽  
Vol 50 (33) ◽  
pp. 4371-4374 ◽  
Author(s):  
Xia Li ◽  
Nobutaka Hanagata ◽  
Xuebin Wang ◽  
Maho Yamaguchi ◽  
Wei Yi ◽  
...  

Boron nitride nanotubes@NaGdF4:Eu composites with core@shell structures were fabricated to trace and manipulate BNNTsin vitro.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rida Tajau ◽  
Rosiah Rohani ◽  
Siti Selina Abdul Hamid ◽  
Zainah Adam ◽  
Siti Najila Mohd Janib ◽  
...  

AbstractPolymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core–shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core–shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.


2018 ◽  
Vol 89 ◽  
pp. 422-428 ◽  
Author(s):  
Xiu-Fen Zhao ◽  
Wei-Yuan Wang ◽  
Xiao-Dong Li ◽  
Shu-Ping Li ◽  
Fu-Gui Song

2017 ◽  
Vol 41 (24) ◽  
pp. 15334-15346 ◽  
Author(s):  
Madhappan Santha Moorthy ◽  
Bharathiraja Subramanian ◽  
Manivasagan Panchanathan ◽  
Sudip Mondal ◽  
Hyehyun Kim ◽  
...  

Fucoidan-coated FeNP@SiOH@Fuc NPs have been proposed for chemotherapy and thermal therapy applications in emerging cancer therapy.


2014 ◽  
Vol 13 (01) ◽  
pp. 1450008 ◽  
Author(s):  
R. Soleyman ◽  
A. Pourjavadi ◽  
N. Masoud ◽  
A. Varamesh

In the current study, γ- Fe 2 O 3/ SiO 2/ PCA / Ag -NPs hybrid nanomaterials were successfully synthesized and characterized. At first, prepared γ- Fe 2 O 3 core nanoparticles were modified by SiO 2 layer. Then they were covered by poly citric acid (PCA) via melting esterification method as well. PCA shell acts as an effective linker, and provides vacancies for conveying drugs. Moreover, this shell as an effective capping agent directs synthesis of silver nanoparticles ( Ag -NPs) via in situ photo-reduction of silver ions by sunlight-UV irradiation. This system has several benefits as a suitable cancer therapy nanomaterial. Magnetic nanoparticles (MNPs) can guide Ag -NPs and drugs to cancer cells and then Ag -NPs can affect those cells via Ag -NPs anti-angiogenesis effect. Size and structure of the prepared magnetic hybrid nanomaterials were characterized using FTIR and UV-Vis spectra, AFM and TEM pictures and XRD data.


Sign in / Sign up

Export Citation Format

Share Document