Analysis and processing of infant cry for diagnosis purposes

2022 ◽  
pp. 351-374
Author(s):  
Mario Mandujano Valdes ◽  
Orion F. Reyes-Galaviz ◽  
Sergio D. Cano Ortiz ◽  
Carlos A. Reyes-García
Keyword(s):  
Author(s):  
Chunyan Ji ◽  
Thosini Bamunu Mudiyanselage ◽  
Yutong Gao ◽  
Yi Pan

AbstractThis paper reviews recent research works in infant cry signal analysis and classification tasks. A broad range of literatures are reviewed mainly from the aspects of data acquisition, cross domain signal processing techniques, and machine learning classification methods. We introduce pre-processing approaches and describe a diversity of features such as MFCC, spectrogram, and fundamental frequency, etc. Both acoustic features and prosodic features extracted from different domains can discriminate frame-based signals from one another and can be used to train machine learning classifiers. Together with traditional machine learning classifiers such as KNN, SVM, and GMM, newly developed neural network architectures such as CNN and RNN are applied in infant cry research. We present some significant experimental results on pathological cry identification, cry reason classification, and cry sound detection with some typical databases. This survey systematically studies the previous research in all relevant areas of infant cry and provides an insight on the current cutting-edge works in infant cry signal analysis and classification. We also propose future research directions in data processing, feature extraction, and neural network classification fields to better understand, interpret, and process infant cry signals.


2022 ◽  
pp. 1-14
Author(s):  
V. Vaishnavi ◽  
P. Suveetha Dhanaselvam

The study of neonatal cry signals is always an interesting topic and still researcher works interminably to develop some module to predict the actual reason for the baby cry. It is really hard to predict the reason for their cry. The main focus of this paper is to develop a Dense Convolution Neural network (DCNN) to predict the cry. The target cry signal is categorized into five class based on their sound as “Eair”, “Eh”, “Neh”, “Heh” and “Owh”. Prediction of these signals helps in the detection of infant cry reason. The audio and speech features (AS Features) were exacted using Mel-Bark frequency cepstral coefficient from the spectrogram cry signal and fed into DCNN network. The systematic DCNN architecture is modelled with modified activation layer to classify the cry signal. The cry signal is collected in different growth phase of the infants and tested in proposed DCNN architecture. The performance of the system is calculated through parameters accuracy, specificity and sensitivity are calculated. The output of proposed system yielded a balanced accuracy of 92.31%. The highest accuracy level 95.31%, highest specificity level 94.58% and highest sensitivity level 93% attain through proposed technique. From this study, it is concluded that the proposed technique is more efficient in detecting cry signal compared to the existing techniques.


Infant Crying ◽  
1985 ◽  
pp. 279-305 ◽  
Author(s):  
Jennifer S. Buchwald ◽  
Carl Shipley
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


Sign in / Sign up

Export Citation Format

Share Document