Combination of chemical methods

2022 ◽  
pp. 401-431
Author(s):  
Morteza Asemani ◽  
Amin Rezaei
Keyword(s):  
Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


Author(s):  
R. J. Narconis ◽  
G. L. Johnson

Analysis of the constituents of renal and biliary calculi may be of help in the management of patients with calculous disease. Several methods of analysis are available for identifying these constituents. Most common are chemical methods, optical crystallography, x-ray diffraction, and infrared spectroscopy. The application of a SEM with x-ray analysis capabilities should be considered as an additional alternative.A scanning electron microscope equipped with an x-ray “mapping” attachment offers an additional dimension in its ability to locate elemental constituents geographically, and thus, provide a clue in determination of possible metabolic etiology in calculus formation. The ability of this method to give an undisturbed view of adjacent layers of elements in their natural state is of advantage in determining the sequence of formation of subsequent layers of chemical constituents.


2019 ◽  
Author(s):  
Antoine Maruani ◽  
Peter A. Szijj ◽  
Calise Bahou ◽  
João C. F. Nogueira ◽  
Stephen Caddick ◽  
...  

<p>Diseases are multifactorial, with redundancies and synergies between various pathways. However, most of the antibody-based therapeutics in clinical trials and on the market interact with only one target thus limiting their efficacy. The targeting of multiple epitopes could improve the therapeutic index of treatment and counteract mechanisms of resistance. To this effect, a new class of therapeutics emerged: bispecific antibodies.</p><p>Bispecific formation using chemical methods is rare and low yielding and/or requires a large excess of one of the two proteins to avoid homodimerisation. In order for chemically prepared bispecifics to deliver their full potential, high-yielding, modular and reliable cross-linking technologies are required. Herein, we describe a novel approach not only for the rapid and high-yielding chemical generation of bispecific antibodies from native antibody fragments, but also for the site-specific dual functionalisation of the resulting bioconjugates. Based on orthogonal clickable functional groups, this strategy enables the assembly of functionalised bispecifics with controlled loading in a modular and convergent manner.</p>


Author(s):  
Y. N. Hua ◽  
G. B. Ang ◽  
S. Redkar ◽  
Yogaspari ◽  
Wilma Richter

Abstract In failure analysis of wafer fabrication, currently, three different types of chemical methods including 6:6:1 (Acetic Acid/HNO3/HF), NaOH and Choline are used in removing polysilicon (poly) layer and exposing the gate/tunnel oxide underneath. However, usage is limited due to their disadvantages. For example, 6:6:1 is a relatively fast etchant, but it is difficult to control the etch time and keep the oxide layer intact. Also, while using NaOH to remove poly and expose the silicon oxide, the solution needs to be heated. It is also difficult to etch a poly layer with a WSix or a CoSix silicide using NaOH. In this paper, we will discuss these 3 etchants in terms of their advantages and disadvantages. We will then introduce a new poly etchant, called HB91. HB91 is useful for removing poly to expose the gate/tunnel oxide for identification of related defects. HB91 is actually a mixture of two chemicals namely nitric acid (HNO3) and buffer oxide etchant (BOE) in a 9:1 ratio. The experimental results show that it is highly selective in poly removal with respect to the gate/tunnel oxide and is a suitable poly etchant especially for removing polysilicon with/without WSix and CoSix in the large capacitor structure. Application results of this poly etchant (HB91) will be presented.


Author(s):  
D. Zudhistira ◽  
V. Viswanathan ◽  
V. Narang ◽  
J.M. Chin ◽  
S. Sharang ◽  
...  

Abstract Deprocessing is an essential step in the physical failure analysis of ICs. Typically, this is accomplished by techniques such as wet chemical methods, RIE, and mechanical manual polishing. Manual polishing suffers from highly non-uniform delayering particularly for sub 20nm technologies due to aggressive back-end-of-line scaling and porous ultra low-k dielectric films. Recently gas assisted Xe plasma FIB has demonstrated uniform delayering of the metal and dielectric layers, achieving a planar surface of heterogeneous materials. In this paper, the successful application of this technique to delayer sub-20 nm microprocessor chips with real defects to root cause the failure is presented.


Sign in / Sign up

Export Citation Format

Share Document