Advances in Docking-Based Drug Design for Microbial and Cancer Drug Targets

Author(s):  
Divya Gupta ◽  
Asad U. Khan
Keyword(s):  
2018 ◽  
Author(s):  
Raimunde Liang ◽  
Isabel Weigand ◽  
Barbara Altieri ◽  
Stefan Kircher ◽  
Sonja Steinhauer ◽  
...  

2020 ◽  
Vol 27 ◽  
Author(s):  
Sehrish Bano ◽  
Abdul Hameed ◽  
Mariya Al-Rashida ◽  
Shafia Iftikhar ◽  
Jamshed Iqbal

Background: The 2019 novel coronavirus (2019-nCoV), also known as coronavirus 2 (SARS-CoV-2) acute respiratory syndrome has recently emerged and continued to spread rapidly with high level of mortality and morbidity rates. Currently, no efficacious therapy is available to relieve coronavirus infections. As new drug design and development takes much time, there is a possibility to find an effective treatment from existing antiviral agents. Objective: In this case, there is a need to find out the relationship between possible drug targets and mechanism of action of antiviral drugs. This review discusses about the efforts to develop drug from known or new molecules. Methods: Viruses usually have two structural integrities, proteins and nucleic acids, both of which can be possible drug targets. Herein, we systemically discuss the structural-functional relationships of the spike, 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro) and RNA-dependent RNA polymerase (RdRp), as these are prominent structural features of corona virus. Certain antiviral drugs such as Remdesivir are RNA dependent RNA polymerase inhibitor. It has the ability to terminate RNA replication by inhibiting ATP. Results: It is reported that ATP is involved in synthesis of coronavirus non-structural proteins from 3CLpro and PLpro. Similarly, mechanisms of action of many other antiviral agents has been discussed in this review. It will provide new insights into the mechanism of inhibition, and let us develop new therapeutic antiviral approaches against novel SARS-CoV-2 coronavirus. Conclusion: In conclusion, this review summarizes recent progress in developing protease inhibitors for SARS-CoV-2.


2020 ◽  
Vol 26 ◽  
Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: The search for novel drugs that can prevent or control Alzheimer’s disease has attracted lot of attention from researchers across the globe. Phytochemicals are increasingly being used to provide scaffolds to design drugs for AD. In silico techniques, have proven to be a game-changer in this drug design and development process. In this review, the authors have focussed on current advances in the field of in silico medicine, applied to phytochemicals, to discover novel drugs to prevent or cure AD. After giving a brief context of the etiology and available drug targets for AD, authors have discussed the latest advances and techniques in computational drug design of AD from phytochemicals. Some of the prototypical studies in this area are discussed in detail. In silico phytochemical analysis is a tool of choice for researchers all across the globe and helps integrate chemical biology with drug design.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 433
Author(s):  
Bijesh George ◽  
P. Mukundan Pillai ◽  
Aswathy Mary Paul ◽  
Revikumar Amjesh ◽  
Kim Leitzel ◽  
...  

To define the growing significance of cellular targets and/or effectors of cancer drugs, we examined the fitness dependency of cellular targets and effectors of cancer drug targets across human cancer cells from 19 cancer types. We observed that the deletion of 35 out of 47 cellular effectors and/or targets of oncology drugs did not result in the expected loss of cell fitness in appropriate cancer types for which drugs targeting or utilizing these molecules for their actions were approved. Additionally, our analysis recognized 43 cellular molecules as fitness genes in several cancer types in which these drugs were not approved, and thus, providing clues for repurposing certain approved oncology drugs in such cancer types. For example, we found a widespread upregulation and fitness dependency of several components of the mevalonate and purine biosynthesis pathways (currently targeted by bisphosphonates, statins, and pemetrexed in certain cancers) and an association between the overexpression of these molecules and reduction in the overall survival duration of patients with breast and other hard-to-treat cancers, for which such drugs are not approved. In brief, the present analysis raised cautions about off-target and undesirable effects of certain oncology drugs in a subset of cancers where the intended cellular effectors of drug might not be good fitness genes and that this study offers a potential rationale for repurposing certain approved oncology drugs for targeted therapeutics in additional cancer types.


2010 ◽  
Vol 1806 (2) ◽  
pp. 251-257
Author(s):  
Mark E. Burkard ◽  
Prasad V. Jallepalli

Sign in / Sign up

Export Citation Format

Share Document