Biofuel cell: existing formats, production level, constraints, and potential uses

2022 ◽  
pp. 531-550
Author(s):  
Makarand M. Ghangrekar ◽  
Swati Das ◽  
Sovik Das
2002 ◽  
Author(s):  
DOUGLAS A. LOY ◽  
CHRISTOPHER J. CORNELIUS ◽  
CHRISTOPHER A. APBLETT ◽  
DAVID INGERSOLL ◽  
SUSAN M. BROZIK ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ján Krahulec ◽  
Martin Šafránek

Abstract Background The aim of this study was to provide an information about the homogeneity on the level of enterokinase productivity in P. pastoris depending on different suppliers of the media components. Results In previous studies, we performed the optimisation process for the production of enterokinase by improving the fermentation process. Enterokinase is the ideal enzyme for removing fusion partners from target recombinant proteins. In this study, we focused our optimization efforts on the sources of cultivation media components. YPD media components were chosen as variables for these experiments. Several suppliers for particular components were combined and the optimisation procedure was performed in 24-well plates. Peptone had the highest impact on enterokinase production, where the difference between the best and worst results was threefold. The least effect on the production level was recorded for yeast extract with a 1.5 fold difference. The worst combination of media components had a activity of only 0.15 U/ml and the best combination had the activity of 0.88 U/ml, i.e., a 5.87 fold difference. A substantially higher impact on the production level of enterokinase was observed during fermentation in two selected media combinations, where the difference was almost 21-fold. Conclusions Results demonstrated in the present study show that the media components from different suppliers have high impact on enterokinase productivity and also provide the hypothesis that the optimization process should be multidimensional and for achieving best results it is important to perform massive process also in terms of the particular media component supplier .


Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 189
Author(s):  
David Bamgboje ◽  
Iasonas Christoulakis ◽  
Ioannis Smanis ◽  
Gaurav Chavan ◽  
Rinkal Shah ◽  
...  

Diabetes mellitus (DM) is a chronic disease that must be carefully managed to prevent serious complications such as cardiovascular disease, retinopathy, nephropathy and neuropathy. Self-monitoring of blood glucose is a crucial tool for managing diabetes and, at present, all relevant procedures are invasive while they only provide periodic measurements. The pain and measurement intermittency associated with invasive techniques resulted in the exploration of painless, continuous, and non-invasive techniques of glucose measurement that would facilitate intensive management. The focus of this review paper is the existing solutions for continuous non-invasive glucose monitoring via contact lenses (CLs) and to carry out a detailed, qualitative, and comparative analysis to inform prospective researchers on viable pathways. Direct glucose monitoring via CLs is contingent on the detection of biomarkers present in the lacrimal fluid. In this review, emphasis is given on two types of sensors: a graphene-AgNW hybrid sensor and an amperometric sensor. Both sensors can detect the presence of glucose in the lacrimal fluid by using the enzyme, glucose oxidase. Additionally, this review covers fabrication procedures for CL biosensors. Ever since Google published the first glucose monitoring embedded system on a CL, CL biosensors have been considered state-of-the-art in the medical device research and development industry. The CL not only has to have a sensory system, it must also have an embedded integrated circuit (IC) for readout and wireless communication. Moreover, to retain mobility and ease of use of the CLs used for continuous glucose monitoring, the power supply to the solid-state IC on such CLs must be wireless. Currently, there are four methods of powering CLs: utilizing solar energy, via a biofuel cell, or by inductive or radiofrequency (RF) power. Although, there are many limitations associated with each method, the limitations common to all, are safety restrictions and CL size limitations. Bearing this in mind, RF power has received most of the attention in reported literature, whereas solar power has received the least attention in the literature. CLs seem a very promising target for cutting edge biotechnological applications of diagnostic, prognostic and therapeutic relevance.


Sign in / Sign up

Export Citation Format

Share Document