Water and nitrogen fertilization management in light of climate change: impacts on food security and product quality

2022 ◽  
pp. 147-178
Author(s):  
A.P.G. Fernandes ◽  
J. Machado ◽  
T.R. Fernandes ◽  
M.W. Vasconcelos ◽  
S.M.P. Carvalho
Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2342
Author(s):  
Wangang Liu ◽  
Yiping Chen ◽  
Xinhua He ◽  
Ping Mao ◽  
Hanwen Tian

Global food insecurity is becoming more severe under the threat of rising global carbon dioxide concentrations, increasing population, and shrinking farmlands and their degeneration. We acquired the ISI Web of Science platform for over 31 years (1988–2018) to review the research on how climate change impacts global food security, and then performed cluster analysis and research hotspot analysis with VosViewer software. We found there were two drawbacks that exist in the current research. Firstly, current field research data were defective because they were collected from various facilities and were hard to integrate. The other drawback is the representativeness of field research site selection as most studies were carried out in developed countries and very few in developing countries. Therefore, more attention should be paid to developing countries, especially some African and Asian countries. At the same time, new modified mathematical models should be utilized to process and integrate the data from various facilities and regions. Finally, we suggested that governments and organizations across the world should be united to wrestle with the impact of climate change on food security.


Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 34 ◽  
Author(s):  
Ali Raza ◽  
Ali Razzaq ◽  
Sundas Mehmood ◽  
Xiling Zou ◽  
Xuekun Zhang ◽  
...  

Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.


2012 ◽  
Vol 2 (2) ◽  
pp. 49-55 ◽  
Author(s):  
Bello O. B. ◽  
Ganiyu O. T. ◽  
Wahab M. K. A. ◽  
Afolabi M. S. ◽  
Oluleye F. ◽  
...  

Author(s):  
ZA Riyadh ◽  
MA Rahman ◽  
SR Saha ◽  
T Ahamed ◽  
D Current

Geographical position makes Bangladesh globally as one of the most vulnerable countries to climate change. It is observed that climate change has become a burning issue jeopardizing the agricultural production in the country. Considering the issue, adoption of climate smart agriculture (CSA) is indispensable for mitigating climate change by reducing emissions, capturing the atmospheric carbon and storing it in biomass and soil. The study reviewed the literature to evaluate the potentiality of agroforestry practices as climate smart agriculture to mitigate climate change impacts. Agroforestry has traditionally contributed to climate resilience in Bangladesh by integrating trees and/or crops into different land use practices. Agroforestry systems enhance resilience to climate change through increasing tree cover, carbon sequestration, increasing production, reducing threats to associated crops, creating favourable microclimate to support associated crops, reducing harvest pressure on natural forests, conserving biodiversity and cycling nutrients. Globally 23 countries recognize agroforestry as a mitigation priority, whereas 29 as an adaptation priority. Bangladesh has potential to expand agroforestry practices to mitigate climate change and boost food security. From socioeconomic and ecological point of views as well, agroforestry offers strong potential to evolve climate smart agricultural practices supporting food security, and adaptation and mitigation. Agroforestry practices should increase in climate vulnerable agroecosystems of Bangladesh. Int. J. Agril. Res. Innov. Tech. 11(1): 49-59, June 2021


Author(s):  
Rebekka Schnitter ◽  
Peter Berry

Climate change impacts on the Canadian food system pose risks to human health. Little attention has been paid to the climate change, food security, and human health nexus, resulting in a number of knowledge gaps regarding food system components that are most vulnerable to climate change. The lack of understanding of key dynamics and possible future impacts challenges the ability of public health officials and partners in other sectors to prepare Canadians for future health risks. A series of literature reviews were conducted to establish the relationship between climate change, food security, and human health, and to identify vulnerabilities within the Canadian food system. Evidence suggests that key activities within the food system are vulnerable to climate change. The pathways in which climate change impacts travel through the food system and affect the critical dimensions of food security to influence human health outcomes are complex. Climate-related disruptions in the food system can indirectly impact human health by diminishing food security, which is a key determinant of health. Human health may also be directly affected by the physical effects of climate change on the food system, primarily related to the impacts on nutrition and foodborne illnesses. In this study, we propose a novel analytical framework to study and respond to the climate change, food security, and human health nexus. This work is intended to help public health officials, researchers, and relevant stakeholders investigate and understand current and future risks, and inform adaptation efforts to protect the health of Canadians.


2011 ◽  
Vol 41 (2) ◽  
pp. 419-433 ◽  
Author(s):  
Shintaro KOBAYASHI ◽  
Jun FURUYA

Sign in / Sign up

Export Citation Format

Share Document