Metal oxide/graphene nanocomposites and their biomedical applications

2022 ◽  
pp. 569-584
Author(s):  
Souravi Bardhan ◽  
Shubham Roy ◽  
Mousumi Mitra ◽  
Sukhen Das
2022 ◽  
pp. 205-231
Author(s):  
Raj Kumar ◽  
Guruprasad Reddy Pulikanti ◽  
Konathala Ravi Shankar ◽  
Darsi Rambabu ◽  
Venkateswarulu Mangili ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 3303-3339 ◽  
Author(s):  
Saee Gharpure ◽  
Aman Akash ◽  
Balaprasad Ankamwar

The field of nanotechnology elaborates the synthesis, characterization as well as application of nanomaterials. Applications of nanoparticles in various fields have interested scientists since decades due to its unique properties. Combination of pharmacology with nanotechnology has helped in development of newer antimicrobial agents in order to control the ever increasing multidrug resistant micro-organisms. Properties of metal and metal oxide nanoparticles like silver, gold, titanium dioxide as well as magnesium oxide as antimicrobial agents are very well known. This review elaborates synthesis methods and antimicrobial mechanisms of various metal as well as metal oxide nanoparticles for better understanding in order to utilize their potentials in various biomedical applications.


2020 ◽  
Vol 10 (7) ◽  
pp. 2499 ◽  
Author(s):  
Namrata Mendiratta ◽  
Suman Lata Tripathi ◽  
Sanjeevikumar Padmanaban ◽  
Eklas Hossain

The Complementary Metal-Oxide Semiconductor (CMOS) technology has evolved to a great extent and is being used for different applications like environmental, biomedical, radiofrequency and switching, etc. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) based biosensors are used for detecting various enzymes, molecules, pathogens and antigens efficiently with a less time-consuming process involved in comparison to other options. Early-stage detection of disease is easily possible using Field-Effect Transistor (FET) based biosensors. In this paper, a steep subthreshold heavily doped n+ pocket asymmetrical junctionless MOSFET is designed for biomedical applications by introducing a nanogap cavity region at the gate-oxide interface. The nanogap cavity region is introduced in such a manner that it is sensitive to variation in biomolecules present in the cavity region. The analysis is based on dielectric modulation or changes due to variation in the bio-molecules present in the environment or the human body. The analysis of proposed asymmetrical junctionless MOSFET with nanogap cavity region is carried out with different dielectric materials and variations in cavity length and height inside the gate–oxide interface. Further, this device also showed significant variation for changes in different introduced charged particles or region materials, as simulated through a 2D visual Technology Computer-Aided Design (TCAD) device simulator.


ACS Nano ◽  
2010 ◽  
Vol 4 (3) ◽  
pp. 1587-1595 ◽  
Author(s):  
Donghai Wang ◽  
Rong Kou ◽  
Daiwon Choi ◽  
Zhenguo Yang ◽  
Zimin Nie ◽  
...  

2014 ◽  
Vol 11 (2) ◽  
pp. 139-149 ◽  
Author(s):  
Denisa Ficai ◽  
Ovidiu Oprea ◽  
Anton Ficai ◽  
Alina Holban

Sign in / Sign up

Export Citation Format

Share Document