Fatigue and fracture

2022 ◽  
pp. 61-100
Author(s):  
Alessio Pipinato ◽  
Eugen Brühwiler
Keyword(s):  
2006 ◽  
Vol 503-504 ◽  
pp. 811-816 ◽  
Author(s):  
Alexei Vinogradov ◽  
Kazuo Kitagawa ◽  
V.I. Kopylov

Anisotropy of mechanical properties, fatigue and fracture resistance of precipitation hardened CuCrZr alloy ultrafine (UFG) grained by equal-channel angular pressing (ECAP) is in focus of the present communication. Fracture toughness was estimated in terms of J-integral and the fatigue crack growth rate was quantified. It was found that although the estimated JIC-value appeared lower than that reported in the literature for a reference alloy, the ductility, fracture and crack growth resistance remained satisfactory after ECAP while the tensile strength and fatigue limit improved considerably. The stable crack growth rate did not differ very much for ECAP and reference conventional CuCrZr and no remarkable anisotropy in the stable crack growth was noticed.


Author(s):  
Khangamlung Kamei ◽  
Muhammad A. Khan

AbstractFatigue damage is a concern in the engineering applications particularly for metal structures. The design phase of a structure considers factors that can prevent or delay the fatigue and fracture failures and increase its working life. This paper compiled some of the past efforts to share the modelling challenges. It provides an overview on the existing research complexities in the area of fatigue and fracture modelling. This paper reviews the previous research work under five prominent challenges: assessing fatigue damage accurately under the vibration-based loads, complications in fatigue and fracture life estimation, intricacy in fatigue crack propagation, quantification of cracks and stochastic response of structure under thermal environment. In the conclusion, the authors have suggested new directions of work that still require comprehensive research efforts to bridge the existing gap in the current academic domain due to the highlighted challenges.


Author(s):  
C. H. Luk ◽  
T. J. Wang

Engineering Criticality Assessment (ECA) is a procedure based on fracture mechanics that may be used to supplement the traditional S-N approach and determine the flaw acceptance and inspection criteria in fatigue and fracture design of risers and flowlines. A number of design codes provide guidance for this procedure, e.g. BS-7910:2005 [1]. However, more investigations and example studies are still needed to address the design implications for riser and flowline applications. This paper provides a review of the existing ECA methodology, presents a fracture mechanics design method for a wide range of riser and flowline fatigue problems, and shows flaw size results from steel catenary riser (SCR) and flowline (FL) examples. The first example is a deepwater SCR subjected to fatigue loads due to vessel motion and riser VIV. The second example is a subsea flowline subjected to thermal fatigue loads. The effects of crack re-characterization and material plasticity on the Level-2 and Level-3 ECA results of the SCR and flowline examples are illustrated.


1994 ◽  
Vol 60 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Vikas Kumar Saxena ◽  
M.S.Gopala Krishna ◽  
P.S. Chhaunker ◽  
V.M. Radhakrishnan

2010 ◽  
Vol 77 (11) ◽  
pp. 2024-2032 ◽  
Author(s):  
J. Toribio ◽  
B. González ◽  
J.C. Matos

Sign in / Sign up

Export Citation Format

Share Document