Thermochemical conversion of algal biomass

2022 ◽  
pp. 281-302
Author(s):  
Sabariswaran Kandasamy ◽  
Narayanamoorthy Bhuvanendran ◽  
Mathiyazhagan Narayanan ◽  
Zhixia He
Author(s):  
Antonio Zuorro ◽  
Janet B. García-Martínez ◽  
Andrés F. Barajas-Solano

Over the last decades, microalgal biomass has gained a significant role in the development of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-end products (biodiesel, bioethanol, and biogas) due to rapid growth and high carbon fixing efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy security while reducing our current reliance on fossil fuels. From the technologies available for obtaining biofuels using microalgae biomass, thermochemical processes (pyrolysis, HTL, gasification) have proven to be processed with higher viability, because they use all biomass. However, because of the complexity of the biomass (lipids, carbohydrates , and proteins), the obtained biofuels from direct thermochemical conversion have large amounts of heteroatoms (oxygen, nitrogen , and sulfur). As a solution, catalyst-based processes have emerged as a sustainable solution for the increase in biocrude production. This paper's objective is to present a comprehensive review of recent developments on catalyst mediated conversion of algal biomass. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.


2021 ◽  
Vol 27 (1) ◽  
pp. 200555-0
Author(s):  
Chitra Devi Venkatachalam ◽  
Sathish Raam Ravichandran ◽  
Mothil Sengottian

Thermochemical conversion is an effective process in production of biocrude. It mainly includes techniques such as torrefaction, liquefaction, gasification and pyrolysis in which Hydrothermal Liquefaction (HTL) has the potential to produce significant energy resource. Algae, one of the third-generation feedstocks is placed in the top order for production of bio-oil compared to the first and second-generation feedstock, as the algae can get multiplied in shorter time with the uptake of greenhouse gases. In HTL, the subcritical water helps the biomass to undergo thermal depolymerisation and produce various chemicals such as nitrogenates, alkanes, phenolics, esters, etc. The produced “biocrude” or “bio-oil” may be further upgraded into value-added chemicals and fuels. In addition, the bio-gas and bio-char are also synthesized as by-products. This review provides an overview of different routes available for thermochemical conversion of biomass. It also provides an insight on the operating parameters such as temperature, pressure, dosage of catalyst and solvent for lignocellulosic and algal biomass under HTL environment. In extent, the article covers the conversion mechanism for these two feedstocks and also the effects of the operating parameters on the yield of biocrude are studied in detail.


2012 ◽  
Vol 109 ◽  
pp. 178-187 ◽  
Author(s):  
Derek R. Vardon ◽  
Brajendra K. Sharma ◽  
Grant V. Blazina ◽  
Kishore Rajagopalan ◽  
Timothy J. Strathmann

Sign in / Sign up

Export Citation Format

Share Document