Enzymatic biosensors for the detection of water pollutants

2022 ◽  
pp. 463-511
Author(s):  
Eduardo C. Reynoso ◽  
Cynthia Romero-Guido ◽  
Georgette Rebollar-Pérez ◽  
Eduardo Torres
2016 ◽  
Vol 44 (2) ◽  
pp. 156-166 ◽  
Author(s):  
Zeinab El-Bouhy ◽  
Rasha Reda ◽  
Asmaa El-Azony

Author(s):  
Agnieszka Kołodziejczak-Radzimska ◽  
Long D. Nghiem ◽  
Teofil Jesionowski

Abstract Purpose of Review Untreated wastewater discharge can significantly and negatively impact the state of the environment. Rapid industrialization and economic development have directly contributed to land and water pollution resulting from the application of many chemicals such as organic dyes, pharmaceuticals, and industrial reagents. The removal of these chemicals before effluent discharge is crucial for environmental protection. This review aims to explore the importance of functionalized materials in the preparation of biocatalytic systems and consider their application in eliminating water pollutants. Recent Findings Wastewater treatment methods can be classified into three groups: (i) chemical (e.g., chemical oxidation and ozonation), (ii) physical (e.g., membrane separation and ion exchange), and (iii) biological processes. Biological treatment is the most widely used method due to its cost-effectiveness and eco-friendliness. In particular, the use of immobilized enzymes has recently become more attractive as a result of scientific progress in advanced material synthesis. The selection of an appropriate support plays an important role in the preparation of such biologically active systems. Recent studies have demonstrated the use of various materials for enzyme immobilization in the purification of water. Summary This review identifies and discusses different biocatalytic systems used in the enzymatic degradation of various water pollutants. Materials functionalized by specific groups can serve as good support matrices for enzyme immobilization, providing chemical and thermal stability to support catalytic reactions. Enzymatic biocatalysis converts the pollutants into simpler products, which are usually less toxic than their parents. Due to immobilization, the enzyme can be used over multiple cycles to reduce the cost of wastewater treatment. Future studies in this field should focus on developing new platforms for enzyme immobilization in order to improve degradation efficiency.


2021 ◽  
Author(s):  
Soniya Agarwal ◽  
Parmita Phukan ◽  
Diganta Sarma ◽  
Kalyanjyoti Deori

A series of copper sulfide (CS) nanoparticles (NPs) were synthesized just by varying the amount of sulfur precursor and have been explored for the first time as a three way...


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1174
Author(s):  
Qilong Ren ◽  
Hui Li

The problem of water pollution is a social issue in China requiring immediate and urgent solutions. In the Beijing–Tianjin–Hebei region, the contradiction between preserving the ecological environment and facilitating sustainable economic development is particularly acute. This study analyzed the spatiotemporal evolution of water pollutants and their factors of influence using statistics on the discharge of two water pollutants, namely chemical oxygen demand (COD) and NH3-N (ammonia nitrogen), in 154 counties in both 2012 and 2016 as research units in the region. The study employed Exploratory Spatial-Time Data Analysis (ESTDA), Standard Deviational Ellipse (SDE), and the Geographically Weighted Regression (GWR) models, as well as ArcGIS and GeoDa software, obtaining the following conclusions: (1) From 2012 to 2016, pollutant discharge dropped significantly, with COD and NH3-N emissions decreasing 65.9% and 47.2%, respectively; the pollutant emissions possessed the spatial feature of gradual gradient descent from the central districts to the periphery. (2) The water pollutants discharge displayed significant and positive spatial correlations. The spatiotemporal cohesion of the spatiotemporal evolution of the pollutants was higher than their spatiotemporal fluidity, representing strong spatial locking. (3) The level of economic development, the level of urbanization, and the intensity of agricultural production input significantly and positively drove pollutant discharge; the environmental regulations had a significant effect on reducing the emission of pollutants. In particular, the effect for NH3-N emissions reduction was stronger; the driving effect of the industrial structure and the distance decay was not significant.


2021 ◽  
Author(s):  
Subhajit Dutta ◽  
Sumanta Let ◽  
Shivani Sharma ◽  
Debanjan Mahato ◽  
Sujit K. Ghosh

Sign in / Sign up

Export Citation Format

Share Document