scholarly journals Functionalized Materials as a Versatile Platform for Enzyme Immobilization in Wastewater Treatment

Author(s):  
Agnieszka Kołodziejczak-Radzimska ◽  
Long D. Nghiem ◽  
Teofil Jesionowski

Abstract Purpose of Review Untreated wastewater discharge can significantly and negatively impact the state of the environment. Rapid industrialization and economic development have directly contributed to land and water pollution resulting from the application of many chemicals such as organic dyes, pharmaceuticals, and industrial reagents. The removal of these chemicals before effluent discharge is crucial for environmental protection. This review aims to explore the importance of functionalized materials in the preparation of biocatalytic systems and consider their application in eliminating water pollutants. Recent Findings Wastewater treatment methods can be classified into three groups: (i) chemical (e.g., chemical oxidation and ozonation), (ii) physical (e.g., membrane separation and ion exchange), and (iii) biological processes. Biological treatment is the most widely used method due to its cost-effectiveness and eco-friendliness. In particular, the use of immobilized enzymes has recently become more attractive as a result of scientific progress in advanced material synthesis. The selection of an appropriate support plays an important role in the preparation of such biologically active systems. Recent studies have demonstrated the use of various materials for enzyme immobilization in the purification of water. Summary This review identifies and discusses different biocatalytic systems used in the enzymatic degradation of various water pollutants. Materials functionalized by specific groups can serve as good support matrices for enzyme immobilization, providing chemical and thermal stability to support catalytic reactions. Enzymatic biocatalysis converts the pollutants into simpler products, which are usually less toxic than their parents. Due to immobilization, the enzyme can be used over multiple cycles to reduce the cost of wastewater treatment. Future studies in this field should focus on developing new platforms for enzyme immobilization in order to improve degradation efficiency.

1999 ◽  
Vol 40 (4-5) ◽  
pp. 137-144 ◽  
Author(s):  
K. Miserez ◽  
S. Philips ◽  
W. Verstraete

A number of new technologies for the advanced treatment of wastewater have recently been developed. The oxidative cometabolic transformation by methanotrophs and by nitrifiers represent new approaches in relation to organic carbon. The Biological Activated Carbon Oxidative Filters characterized by thin biofilms are also promising in that respect. Moreover, implementing genetically modified organisms with improved catabolic potential in advanced water treatment comes into perspective. For very refractory effluents chemical support techniques, like e.g. strong chemical oxidation, can be lined up with advanced biology.


2019 ◽  
Vol 25 (24) ◽  
pp. 2661-2676 ◽  
Author(s):  
Sundaresan Bhavaniramya ◽  
Ramar Vanajothi ◽  
Selvaraju Vishnupriya ◽  
Kumpati Premkumar ◽  
Mohammad S. Al-Aboody ◽  
...  

Enzymes exhibit a great catalytic activity for several physiological processes. Utilization of immobilized enzymes has a great potential in several food industries due to their excellent functional properties, simple processing and cost effectiveness during the past decades. Though they have several applications, they still exhibit some challenges. To overcome the challenges, nanoparticles with their unique physicochemical properties act as very attractive carriers for enzyme immobilization. The enzyme immobilization method is not only widely used in the food industry but is also a component methodology in the pharmaceutical industry. Compared to the free enzymes, immobilized forms are more robust and resistant to environmental changes. In this method, the mobility of enzymes is artificially restricted to changing their structure and properties. Due to their sensitive nature, the classical immobilization methods are still limited as a result of the reduction of enzyme activity. In order to improve the enzyme activity and their properties, nanomaterials are used as a carrier for enzyme immobilization. Recently, much attention has been directed towards the research on the potentiality of the immobilized enzymes in the food industry. Hence, the present review emphasizes the different types of immobilization methods that is presently used in the food industry and other applications. Various types of nanomaterials such as nanofibers, nanoflowers and magnetic nanoparticles are significantly used as a support material in the immobilization methods. However, several numbers of immobilized enzymes are used in the food industries to improve the processing methods which not only reduce the production cost but also the effluents from the industry.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Peter Hammond ◽  
Michael Suttie ◽  
Vaughan T. Lewis ◽  
Ashley P. Smith ◽  
Andrew C. Singer

AbstractMonitoring and regulating discharges of wastewater pollution in water bodies in England is the duty of the Environment Agency. Identification and reporting of pollution events from wastewater treatment plants is the duty of operators. Nevertheless, in 2018, over 400 sewage pollution incidents in England were reported by the public. We present novel pollution event reporting methodologies to identify likely untreated sewage spills from wastewater treatment plants. Daily effluent flow patterns at two wastewater treatment plants were supplemented by operator-reported incidents of untreated sewage discharges. Using machine learning, known spill events served as training data. The probability of correctly classifying a randomly selected pair of ‘spill’ and ‘no-spill’ effluent patterns was above 96%. Of 7160 days without operator-reported spills, 926 were classified as involving a ‘spill’. The analysis also suggests that both wastewater treatment plants made non-compliant discharges of untreated sewage between 2009 and 2020. This proof-of-principle use of machine learning to detect untreated wastewater discharges can help water companies identify malfunctioning treatment plants and inform agencies of unsatisfactory regulatory oversight. Real-time, open access flow and alarm data and analytical approaches will empower professional and citizen scientific scrutiny of the frequency and impact of untreated wastewater discharges, particularly those unreported by operators.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 798
Author(s):  
Samendra P. Sherchan ◽  
Shalina Shahin ◽  
Jeenal Patel ◽  
Lauren M. Ward ◽  
Sarmila Tandukar ◽  
...  

In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A–F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April–July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.


Author(s):  
Huchuan Yan ◽  
Cui Lai ◽  
Dongbo Wang ◽  
Shiyu Liu ◽  
Xiaopei Li ◽  
...  

Refractory organic pollutants in wastewater have the characteristics of persistence and toxicity, which seriously threaten the health and safety of humans and other organisms. Many researchers have committed to developing...


Author(s):  
Jakub Zdarta ◽  
Katarzyna Jankowska ◽  
Karolina Bachosz ◽  
Oliwia Degórska ◽  
Karolina Kaźmierczak ◽  
...  

Abstract Purpose of Review In the presented review, we have summarized recent achievements on the use of immobilized oxidoreductases for biodegradation of hazardous organic pollutants including mainly dyes, pharmaceuticals, phenols, and bisphenols. In order to facilitate process optimization and achievement of high removal rates, effect of various process conditions on biodegradation has been highlighted and discussed. Recent Findings Current reports clearly show that immobilized oxidoreductases are capable of efficient conversion of organic pollutants, usually reaching over 90% of removal rate. Further, immobilized enzymes showed great recyclability potential, allowing their reuse in numerous of catalytic cycles. Summary Collected data clearly indicates immobilized oxidoreductases as an efficient biocatalytic tools for removal of hazardous phenolic compounds, making them a promising option for future water purification. Data shows, however, that both immobilization and biodegradation conditions affect conversion efficiency; therefore, process optimization is required to achieve high removal rates. Nevertheless, we have demonstrated future trends and highlighted several issues that have to be solved in the near-future research, to facilitate large-scale application of the immobilized oxidoreductases in wastewater treatment.


2021 ◽  
Author(s):  
Adamo R. Petosa ◽  
Monica Nowierski ◽  
Viviane Yargeau

Abstract Bioanalytical tools, namely in vitro bioassays, can be employed in tandem with chemical analyses to assess the efficacy of wastewater treatment and the potential for adverse effects from the discharges of wastewater into receiving waters. In the present study, samples of untreated wastewater (i.e. influent) and treated wastewater (i.e. effluent) were collected from two wastewater treatment plants and a wastewater treatment lagoon serving municipalities in southern Ontario, Canada. In addition, grab samples of surface water were collected downstream of the lagoon discharge. After solid phase extraction (SPE) using ion-exchange columns for basic/neutral and acidic compounds, respectively, the extracts were analyzed for a suite of 16 indicator compounds. The two SPE extracts were combined for analysis of biological responses in four in vitro cell-based bioassays. The concentrations of several indicator compounds, including the estrogens, 17β-estradiol and 17α-ethinylestradiol, were below the limits of detection. However, androstenedione and estrone were detected in several influent samples. The concentrations of these steroid hormones and some of the other indicator compounds declined during treatment but acesulfame K, carbamazepine, trimethoprim and DEET persisted in the effluent. The MTS- CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) indicated that cell viability was not affected by exposure to the extracts. The Qiagen Nuclear Receptors 10-Pathway Reporter Array indicated that several cellular pathways were upregulated, with the greatest upregulation observed with the estrogen receptor (i.e. induction ratios 12 to 47) and the liver X receptor (i.e. induction ratios 10 to 45). The ERα CALUX assay indicated that estrogenic activity was lower in effluents compared to influents, with the greatest estrogenic activity observed for grab samples of influent from the lagoon (i.e. 56-215 ng L-1 17β-estradiol equivalents). Finally, the results of the Nrf2 Luciferase Luminescence Assay indicated a lower oxidative stress in the effluent samples. Overall, the present study demonstrates that chemical analyses are limited in their ability to predict or explain reductions in the toxicity of treated wastewater. There are thus advantages to using a combination of chemical analyses and in vitro bioassays to monitor the treatment efficiency of wastewater treatment plants and to predict the potential impacts of wastewater discharges into receiving waters.


2020 ◽  
Vol 4 (2) ◽  

In the present work NiO/ZnO was synthesized from combustion method, polyaniline and the polyaniline based NiO/ZnO using chemical oxidation method. The synthesized materials were characterized using XRD and UV/Vis absorbance spectroscopy. From XRD, the formation of NiO/ZnO was confirmed. The study investigates the applicability of NiO/ZnO Nanocomposite as photo catalyst for the degradation of organic dyes. Results suggested an increase in degradation efficiency in the case of polymer nanocomposite when compared to counter parts.


Sign in / Sign up

Export Citation Format

Share Document