Microseismic analysis to aid gas reservoir characterization

2022 ◽  
pp. 219-242
Author(s):  
Lei Li ◽  
Jingqiang Tan ◽  
Yuyang Tan ◽  
Xinpeng Pan ◽  
Zhengguang Zhao
2021 ◽  
Author(s):  
I. Sumantri

BH field is one of the Globigerina limestone gas reservoir that exhibits strong seismic direct hydrocarbon indicator (DHI). This field is a 4-way dip faulted closure with Globigerina limestone as the main reservoir objective. The field was discovered back in 2011 by BH-1 exploration well and successfully penetrated about 350ft gross gas pay. BH-1 well was plugged and abandoned as Pliocene Globigerina limestone Mundu-Selorejo sequence gas discoveries. The laboratory analysis of sampled gas consists of 97.8% of CH4 and indicating a biogenic type of gas. This is the only exploration well drilled in this field and located on the crest of the structure. Seismic analysis both qualitative and quantitative, are common tools in delineating and characterizing reservoir. These methods usually make use of seismic data and well log collaboratively in the quest to reveal reservoir features internally. The lack of appraisal well in the area of study made the reservoir characterization process must be carried out thoroughly, incorporating several seismic datasets, both PSTM and PSDM, seismic gathers and stacks. Bounded by appraisal well limitation, this research looks into Gassmann's fluid substitution modeling, seismic forward modeling to confirm the DHI flat spot presence in the seismic, as well as seismic AVO analysis. Meanwhile, for quantitative analysis, model-based seismic post-stack inversion and simultaneous seismic pre-stack inversion were conducted in order to delineate the distribution of Globigerina limestone gas reservoir in BH Field. Through comprehensive analyses of qualitative and quantitative methods, this research may answer the challenge on how to intensively utilize seismic data to compensate the lack of appraisal well data in order to keep delivering a proper subsurface reservoir delineation.


2020 ◽  
Vol 177 (11) ◽  
pp. 5417-5433
Author(s):  
Tieyi Wang ◽  
Sanyi Yuan ◽  
Rui Wang ◽  
Shan Yang ◽  
Shangxu Wang

2020 ◽  
Vol 8 (2) ◽  
pp. SG21-SG31
Author(s):  
Yadong Zhang ◽  
Reza Rezaee ◽  
Tobias M. Müller ◽  
Guangjie Zheng ◽  
Jimmy X. Li ◽  
...  

We have predicted the flow permeability and its spatial distribution for the Longmaxi shale gas reservoir using microseismicity induced during hydraulic-fracturing stimulation. In the time-of-occurrence versus distance-from-injector plot, we find that microseismic points exhibit a parabolic envelope, which we interpret as a triggering front. This reveals that fluid pressure diffusion is at least one of the underlying mechanisms of microseismicity generation. We derive the large-scale equivalent diffusivity from the triggering front plot and thereafter obtain a 3D diffusivity map of the heterogeneous reservoir by solving an eikonal-like equation suggested previously. During this process, we apply kriging interpolation to increase the density of sparsely distributed microseismic points. The resulting diffusivity ranges between 1.0 and [Formula: see text] with the peak probability attained at [Formula: see text], which is consistent with the estimate we obtain from the triggering front analysis. We transform the diffusivity map into a permeability map using three different theories of fluid pressure diffusion in porous media: the seismicity-based reservoir characterization method (SBRC) based on Biot’s theory of poroelasticity, the quasirigid medium approximation (QRMA), and the deformable medium approximation (DMA) based on the de la Cruz-Spanos theory. The permeability according to QRMA is slightly higher than that from SBRC, yet we observe no significant difference. However, these estimates are by one order of magnitude higher compared with the permeability estimate from DMA. Furthermore, the permeability from all three theories is much higher than that from previously reported core sample measurements. We interpret this as the difference between large-scale equivalent and matrix permeability and therefore lend weight to the hypothesis that there exist highly conducting fluid pathways, such as natural fractures.


Sign in / Sign up

Export Citation Format

Share Document