Seismic Qualitative and Quantitative Analysis for Reservoir Characterization of Globigerina BH Gas Field, North East Java Basin.

2021 ◽  
Author(s):  
I. Sumantri

BH field is one of the Globigerina limestone gas reservoir that exhibits strong seismic direct hydrocarbon indicator (DHI). This field is a 4-way dip faulted closure with Globigerina limestone as the main reservoir objective. The field was discovered back in 2011 by BH-1 exploration well and successfully penetrated about 350ft gross gas pay. BH-1 well was plugged and abandoned as Pliocene Globigerina limestone Mundu-Selorejo sequence gas discoveries. The laboratory analysis of sampled gas consists of 97.8% of CH4 and indicating a biogenic type of gas. This is the only exploration well drilled in this field and located on the crest of the structure. Seismic analysis both qualitative and quantitative, are common tools in delineating and characterizing reservoir. These methods usually make use of seismic data and well log collaboratively in the quest to reveal reservoir features internally. The lack of appraisal well in the area of study made the reservoir characterization process must be carried out thoroughly, incorporating several seismic datasets, both PSTM and PSDM, seismic gathers and stacks. Bounded by appraisal well limitation, this research looks into Gassmann's fluid substitution modeling, seismic forward modeling to confirm the DHI flat spot presence in the seismic, as well as seismic AVO analysis. Meanwhile, for quantitative analysis, model-based seismic post-stack inversion and simultaneous seismic pre-stack inversion were conducted in order to delineate the distribution of Globigerina limestone gas reservoir in BH Field. Through comprehensive analyses of qualitative and quantitative methods, this research may answer the challenge on how to intensively utilize seismic data to compensate the lack of appraisal well data in order to keep delivering a proper subsurface reservoir delineation.

2019 ◽  
Vol 38 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Phuong Hoang ◽  
Arcangelo Sena ◽  
Benjamin Lascaud

The characterization of shale plays involves an understanding of tectonic history, geologic settings, reservoir properties, and the in-situ stresses of the potential producing zones in the subsurface. The associated hydrocarbons are generally recovered by horizontal drilling and hydraulic fracturing. Historically, seismic data have been used mainly for structural interpretation of the shale reservoirs. A primary benefit of surface seismic has been the ability to locate and avoid drilling into shallow carbonate karsting zones, salt structures, and basement-related major faults which adversely affect the ability to drill and complete the well effectively. More recent advances in prestack seismic data analysis yield attributes that appear to be correlated to formation lithology, rock strength, and stress fields. From these, we may infer preferential drilling locations or sweet spots. Knowledge and proper utilization of these attributes may prove valuable in the optimization of drilling and completion activities. In recent years, geophysical data have played an increasing role in supporting well planning, hydraulic fracturing, well stacking, and spacing. We have implemented an integrated workflow combining prestack seismic inversion and multiattribute analysis, microseismic data, well-log data, and geologic modeling to demonstrate key applications of quantitative seismic analysis utilized in developing ConocoPhillips' acreage in the Delaware Basin located in Texas. These applications range from reservoir characterization to well planning/execution, stacking/spacing optimization, and saltwater disposal. We show that multidisciplinary technology integration is the key for success in unconventional play exploration and development.


2020 ◽  
Author(s):  
Konrad Wojnar ◽  
Jon S?trom ◽  
Tore Felix Munck ◽  
Martha Stunell ◽  
Stig Sviland-Østre ◽  
...  

Abstract The aim of the study was to create an ensemble of equiprobable models that could be used for improving the reservoir management of the Vilje field. Qualitative and quantitative workflows were developed to systematically and efficiently screen, analyze and history match an ensemble of reservoir simulation models to production and 4D seismic data. The goal of developing the workflows is to increase the utilization of data from 4D seismic surveys for reservoir characterization. The qualitative and quantitative workflows are presented, describing their benefits and challenges. The data conditioning produced a set of history matched reservoir models which could be used in the field development decision making process. The proposed workflows allowed for identification of outlying prior and posterior models based on key features where observed data was not covered by the synthetic 4D seismic realizations. As a result, suggestions for a more robust parameterization of the ensemble were made to improve data coverage. The existing history matching workflow efficiently integrated with the quantitative 4D seismic history matching workflow allowing for the conditioning of the reservoir models to production and 4D data. Thus, the predictability of the models was improved. This paper proposes a systematic and efficient workflow using ensemble-based methods to simultaneously screen, analyze and history match production and 4D seismic data. The proposed workflow improves the usability of 4D seismic data for reservoir characterization, and in turn, for the reservoir management and the decision-making processes.


2021 ◽  
Author(s):  
Rustem Valiakhmetov ◽  
Andrea Murineddu ◽  
Murat Zhiyenkulov ◽  
Viktor Maliar ◽  
Viktor Bugriy ◽  
...  

Abstract The objective of this work is to describe a comprehensive approach integrating seismic data processing and sets of wireline logs for reservoir characterization of one of the tight gas plays of the Dnieper-Donets basin. This paper intends to discuss a case study from seismic data processing, integrating seismic attributes with formation properties from logs in a geocellular model for sweet spot selection and risk analysis. The workflow during the project included the following steps.Seismic data 3D processing, including 5D interpolation and PSTM migration.Interpretation of limited log data from 4 exploration and appraisal wells.Seismic interpretation and inversion.Building a static model of the field.Recommendations for drilling locations.Evaluation of the drilled well to verify input parameters of the initial model. The static model integrated all available subsurface data and used inverted seismic attributes calibrated to the available logs to constrain the property modelling. Then various deterministic and stochastic approaches were used for facies modeling and estimation of gas-in-place volume. Integrating all the available data provides insights for better understating the reservoir distribution and provided recommendations for drilling locations. Based on the combination of the geocellular model, seismic attributes and seismic inversion results, the operator drilled an exploration well. The modern set of petrophysical logs acquired in the recently drilled well enforced prior knowledge and delivered a robust picture of the tight gas reservoir. The results from the drilled well matched predicted formation properties very closely, which added confidence in the technical approach applied in this study and similar studies that followed later. It is the fork in the road moment for the Dnieper-Donetsk basin with huge tight gas potential in the region that inspires for exploration of other prospects and plays. A synergy of analytical methods with a combination of seismic processing, geomodeling, and reservoir characterization approaches allowed accurate selection of the drilling targets with minimum risk of "dry hole" that has been vindicated by successful drilling outcome in a new exploration well.


Author(s):  
Gang Yu ◽  
Yusheng Zhang ◽  
Ximing Wang ◽  
Xing Liang ◽  
Uwe Strecker ◽  
...  

Author(s):  
Michael Matheney ◽  
Tim Jenkinson ◽  
Andrew Shatilo ◽  
Rishi Bansal ◽  
Kyle Lewallen

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Bayu Setiawan ◽  
Nuridin Nuridin

<em>The purpose of this study was to determine the effect of work environment and work discipline on work productivity of employees at the Bekasi SPBU Operators Section, PT Pertamina Retail. </em><em>The research method used is descriptive qualitative and quantitative analysis, the analysis model used linear regression either partially or simultaneous. The population in this study were 52 employees of the Bekasi SPBU Operator Section, Ahmad Yani. The sampling technique in this study used a saturated sampling technique, all members of the population were sampled totaling 52 employees. The result work environment and work discipline have a positive and significant effect on the work productivity of employees of PT Pertamina Retail's Bekasi SPBU Operators Section, either partially or simultaneous.</em>


2021 ◽  
Author(s):  
Bing Xie ◽  
Qiang Lai ◽  
Jing Mo ◽  
Li Bai ◽  
Wenjun Luo ◽  
...  

Abstract Predicted reservoir results from conventional methods didn’t match the production performance in GS B well block in the Lower Sinian Dengying dolomite formation. The predicted gas production of vertical well is around 500k m3/day, but the real gas production is below 100k m3/day. In GS A well block, the predicted gas production of vertical well is consistent with the real gas production around 500k m3/day, and when meter cavie develops, test gas production can reach 1000k m3/day. It suggests the biggest challenge is to clarify reservoir characterization in GS B well block. However, due to the limited resolution of conventional logs and strong heterogeneity of carbonate reservoir, conventional open hole logs and seismic data has limitation to provide the details of secondary pore and fractures to clarify reservoir characterization. The electrical image logs provide high resolution images with high borehole coverage. It can provide abundant information about secondary pore and fracture to identify dominant dissolution facies window. Through electrical image logs, secondary pore and fracture classification in 50 vertical wells were performed in the Lower Sinian Dengying dolomite formation. Five facies were detected based on electrical image logs, including vug facies (honeycomb vug facies, algal stromatolite vug facies and bedding vug facies), cave facies, fracture-vug facies, massive dense facies and dark thin layer dense facies. With the five facies and top interface constraints from seismic data, 3D dissolution facies model was created, which can show different dissolution facies window of GS A and GS B well block. The method in this paper reveals the reason of confliction and agree test gas production. The case study presents how to identify five dissolution facies based on high-resolution electrical image logs with core data calibration. Besides, 3D dissolution facies model is created to show dissolution facies window of GS B well block to optimize well trajectory deployment during the development stage. Better understanding of reservoir characterization was instructive for acid fracturing design of Dengying dolomite gas reservoir as well.


2016 ◽  
Author(s):  
Gang Yu ◽  
Yusheng Zhang ◽  
Ximing Wang ◽  
Xing Liang ◽  
Uwe Strecker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document