Immunity of residual current devices to the impulse leakage currents

2022 ◽  
pp. 185-191
Author(s):  
Stanislaw Czapp
2022 ◽  
Vol 1211 (1) ◽  
pp. 012020
Author(s):  
O К Nikolsky ◽  
T M Khalina

Abstract The developments of the AltSTU have been reviewed in the area of creating a new technology for preventing technogenic hazards based on the residual current devices. The residual current devices are intended for protecting people from electric shock in case of contact with conductive parts of the electric appliances and shall facilitate reduction of fire risks caused by a prolonged flow of leakage currents and fault currents resulting from them. The results of creating different modifications of protective trip circuits and their industrial use are provided.


2021 ◽  
Vol 19 ◽  
pp. 67-72
Author(s):  
T. M. H. Slangen ◽  
◽  
B. R. F. Lustenhouwer ◽  
V. Cuk ◽  
J. F. G. Cobben

This research investigates the effects of high frequency currents between 50 Hz and 150 kHz on the operation of Residual Current Devices (RCDs). Nowadays, the increasing amount of large power-electronic switching devices can be a source of both harmonics (<2 kHz) and supraharmonics (2-150 kHz) currents injected to the grid. This can have several effects and possibly lead to unwanted tripping of RCDs, due to high earth-currents that can be emitted by the devices. The question is if supraharmonics can also lead to misoperation or fail-to-operate conditions for the RCDs, potentially leading to serious safety risks. A set-up is developed to introduce both 50 Hz and highfrequency leakage currents. First, the 50 Hz tripping-current of the RCDs is tested under nominal conditions. Secondly, the tripping current for non-nominal frequencies (between 50 Hz and 150 kHz) is determined to verify the possibility for false tripping. Lastly, the 50 Hz tripping current for the RCD is tested in the presence of a high-frequency current. The most important conclusion is that RCDs of type A and AC have an increased fundamental (50 Hz) tripping current when there are HFcomponents present. This potentially results in a safety risk.


1998 ◽  
Author(s):  
I. De Wolf ◽  
G. Groeseneken ◽  
H.E. Maes ◽  
M. Bolt ◽  
K. Barla ◽  
...  

Abstract It is shown, using micro-Raman spectroscopy, that Shallow Trench Isolation introduces high stresses in the active area of silicon devices when wet oxidation steps are used. These stresses result in defect formation in the active area, leading to high diode leakage currents. The stress levels are highest near the outer edges of line structures and at square structures. They also increase with decreasing active area dimensions.


Author(s):  
R. Rosenkranz ◽  
W. Werner

Abstract In many cases of failure localization, passive voltage contrast (PVC) localization method does not work, because it is not possible to charge up conducting structures which supposed to be dark in the SEM and FIB images. The reason for this is leakage currents. In this article, the authors show how they succeeded in overcoming these difficulties by the application of the active voltage contrast (AVC) method as it was described as biased voltage contrast by Campbell and Soden. They identified three main cases where the PVC didn't work but where they succeeded in failure localization with the AVC method. This is illustrated with the use of two case studies. Compared to the optical beam based methods the resolution is much better so a single failing contact of e.g. 70 nm technology can clearly be identified which cannot be done by TIVA or OBIRCH.


Author(s):  
Dominique Carisetti ◽  
Nicolas Sarazin ◽  
Nathalie Labat ◽  
Nathalie Malbert ◽  
Arnaud Curutchet ◽  
...  

Abstract To improve the long-term stability of AlGaN/GaN HEMTs, the reduction of gate and drain leakage currents and electrical anomalies at pinch-off is required. As electron transport in these devices is both coupled with traps or surface states interactions and with polarization effects, the identification and localization of the preeminent leakage path is still challenging. This paper demonstrates that thermal laser stimulation (TLS) analysis (OBIRCh, TIVA, XIVA) performed on the die surface are efficient to localize leakage paths in GaN based HEMTs. The first part details specific parameters, such as laser scan speed, scan direction, wavelength, and laser power applied for leakage gate current paths identification. It compares results obtained with Visible_NIR electroluminescence analysis with the ones obtained by the TLS techniques on GaN HEMT structures. The second part describes some failure analysis case studies of AlGaN/GaN HEMT with field plate structure which were successful, thanks to the OBIRCh technique.


Sign in / Sign up

Export Citation Format

Share Document