Pest-infected oak trees identify using remote sensing-based classification algorithms

2022 ◽  
pp. 363-376
Author(s):  
Saleh Yousefi ◽  
Farshad Haghighian ◽  
Mojtaba Naghdyzadegan-Jahromi ◽  
Hamid Reza Pourghasemi
Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1188 ◽  
Author(s):  
Jianming Zhang ◽  
Chaoquan Lu ◽  
Jin Wang ◽  
Xiao-Guang Yue ◽  
Se-Jung Lim ◽  
...  

Many remote sensing scene classification algorithms improve their classification accuracy by additional modules, which increases the parameters and computing overhead of the model at the inference stage. In this paper, we explore how to improve the classification accuracy of the model without adding modules at the inference stage. First, we propose a network training strategy of training with multi-size images. Then, we introduce more supervision information by triplet loss and design a branch for the triplet loss. In addition, dropout is introduced between the feature extractor and the classifier to avoid over-fitting. These modules only work at the training stage and will not bring about the increase in model parameters at the inference stage. We use Resnet18 as the baseline and add the three modules to the baseline. We perform experiments on three datasets: AID, NWPU-RESISC45, and OPTIMAL. Experimental results show that our model combined with the three modules is more competitive than many existing classification algorithms. In addition, ablation experiments on OPTIMAL show that dropout, triplet loss, and training with multi-size images improve the overall accuracy of the model on the test set by 0.53%, 0.38%, and 0.7%, respectively. The combination of the three modules improves the overall accuracy of the model by 1.61%. It can be seen that the three modules can improve the classification accuracy of the model without increasing model parameters at the inference stage, and training with multi-size images brings a greater gain in accuracy than the other two modules, but the combination of the three modules will be better.


2020 ◽  
Vol 123 (4) ◽  
pp. 573-586
Author(s):  
M. Twala ◽  
R. J. Roberts ◽  
C. Munghemezulu

Abstract Multispectral sensors, along with common and advanced algorithms, have become efficient tools for routine lithological discrimination and mineral potential mapping. It is with this paradigm in mind that this paper sought to evaluate and discuss the detection and mapping of magnetite on the Eastern Limb of the Bushveld Complex, using high spectral resolution multispectral remote sensing imagery and GIS techniques. Despite the wide distribution of magnetite, its economic importance, and its potential as an indicator of many important geological processes, not many studies had looked at the detection and exploration of magnetite using remote sensing in this region. The Maximum Likelihood and Support Vector Machine classification algorithms were assessed for their respective ability to detect and map magnetite using the PlanetScope Analytic data. A K-fold cross-validation analysis was used to measure the performance of the training as well as the test data. For each classification algorithm, a thematic landcover map was created and an error matrix, depicting the user’s and producer’s accuracies as well as kappa statistics, was derived. A pairwise comparison test of the image classification algorithms was conducted to determine whether the two classification algorithms were significantly different from each other. The Maximum Likelihood Classifier significantly outperformed the Support Vector Machine algorithm, achieving an overall classification accuracy of 84.58% and an overall kappa value of 0.79. Magnetite was accurately discriminated from the other thematic landcover classes with a user’s accuracy of 76.41% and a producer’s accuracy of 88.66%. The overall results of this study illustrated that remote sensing techniques are effective instruments for geological mapping and mineral investigation, especially iron oxide mineralization in the Eastern Limb of the Bushveld Complex.


Author(s):  
D. Rawal ◽  
A. Chhabra ◽  
M. Pandya ◽  
A. Vyas

Abstract. Land cover mapping using remote-sensing imagery has attracted significant attention in recent years. Classification of land use and land cover is an advantage of remote sensing technology which provides all information about land surface. Numerous studies have investigated land cover classification using different broad array of sensors, resolution, feature selection, classifiers, Classification Techniques and other features of interest from over the past decade. One, Pixel based image classification technique is widely used in the world which works on their per pixel spectral reflectance. Classification algorithms such as parallelepiped, minimum distance, maximum likelihood, Mahalanobis distance are some of the classification algorithms used in this technique. Other, Object based image classification is one of the most adapted land cover classification technique in recent time which also considers other parameters such as shape, colour, smoothness, compactness etc. apart from the spectral reflectance of single pixel.At present, there is a possibility of getting the more accurate information about the land cover classification by using latest technology, recent and relevant algorithms according to our study. In this study a combination of pixel-by-pixel image classification and object based image classification is done using different platforms like ArcGIS and e-cognition, respectively. The aim of the study is to analyze LULC pattern using satellite imagery and GIS for the Ahmedabad district in the state of Gujarat, India using a LISS-IV imagery acquired from January to April, 2017. The over-all accuracy of the classified map is 84.48% with Producer’s and User’s accuracy as 89.26% and 84.47% respectively. Kappa statistics for the classified map are calculated as 0.84. This classified map at 1:10,000 scale generated using recent available high resolution space borne data is a valuable input for various research studies over the study area and also provide useful information to town planners and civic authorities. The developed technique can be replicated for generating such LULC maps for other study areas as well.


2021 ◽  
Author(s):  
Mthokozisi Twala ◽  
James Roberts ◽  
Cilence Munghemezulu

<p>The use of remote sensing in mineral detection and lithological mapping has become a generally accepted augmentative tool in exploration. With the advent of multispectral sensors (e.g. ASTER, Landsat, Sentinel and PlanetScope) having suitable wavelength coverage and bands in the Shortwave Infrared (SWIR) and Thermal Infrared (TIR) regions, multispectral sensors have become increasingly efficient at routine lithological discrimination and mineral potential mapping. It is with this paradigm in mind that this project sought to evaluate and discuss the detection and mapping of vanadium bearing magnetite, found in discordant bodies and magnetite layers, on the Eastern Limb of the Bushveld Complex. The Bushveld Complex hosts the world’s largest resource of high-grade primary vanadium in magnetitite layers, so the wide distribution of magnetite, its economic importance, and its potential as an indicator of many important geological processes warranted the delineation of magnetite.</p><p> </p><p>The detection and mapping of the vanadium bearing magnetite was evaluated using specialized traditional, and advanced machine learning algorithms. Prior to this study, few studies had looked at the detection and exploration of magnetite using remote sensing, despite remote sensing tools having been regularly applied to diverse aspects of geosciences. Maximum Likelihood, Minimum Distance to Means, Artificial Neural Networks, Support Vector Machine classification algorithms were assessed for their respective ability to detect and map magnetite using the PlanetScope data in ENVI, QGIS, and Python. For each classification algorithm, a thematic landcover map was attained and the accuracy assessed using an error matrix, depicting the user's and producer's accuracies, as well as kappa statistics.</p><p> </p><p>The Maximum Likelihood Classifier significantly outperformed the other techniques, achieving an overall classification accuracy of 84.58% and an overall kappa value of 0.79. Magnetite was accurately discriminated from the other thematic landcover classes with a user’s accuracy of 76.41% and a producer’s accuracy of 88.66%. The erroneous classification of some mining activity pixels as magnetite in the Maximum Likelihood was inherent to all classification algorithms. The overall results of this study illustrated that remote sensing techniques are effective instruments for geological mapping and mineral investigation, especially in iron oxide mineralization in the Eastern Limb of Bushveld Complex. </p><p> </p>


2021 ◽  
Vol 13 (8) ◽  
pp. 1598
Author(s):  
Bidroha Basu ◽  
Srikanta Sannigrahi ◽  
Arunima Sarkar Basu ◽  
Francesco Pilla

Plastic pollution poses a significant environmental threat to the existence and health of biodiversity and the marine ecosystem. The intrusion of plastic to the food chain is a massive concern for human health. Urbanisation, population growth, and tourism have been identified as major contributors to the growing rate of plastic debris, particularly in waterbodies such as rivers, lakes, seas, and oceans. Over the past decade, many studies have focused on identifying the waterbodies near the coastal regions where a high level of accumulated plastics have been found. This research focused on using high-resolution Sentinel-2 satellite remote sensing images to detect floating plastic debris in coastal waterbodies. Accurate detection of plastic debris can help in deploying appropriate measures to reduce plastics in oceans. Two unsupervised (K-means and fuzzy c-means (FCM)) and two supervised (support vector regression (SVR) and semi-supervised fuzzy c-means (SFCM)) classification algorithms were developed to identify floating plastics. The unsupervised classification algorithms consider the remote sensing data as the sole input to develop the models, while the supervised classifications require in situ information on the presence/absence of floating plastics in selected Sentinel-2 grids for modelling. Data from Cyprus and Greece were considered to calibrate the supervised models and to estimate model efficiency. Out of available multiple bands of Sentinel-2 data, a combination of 6 bands of reflectance data (blue, green, red, red edge 2, near infrared, and short wave infrared 1) and two indices (NDVI and FDI) were selected to develop the models, as they were found to be most efficient for detecting floating plastics. The SVR-based supervised classification has an accuracy in the range of 96.9–98.4%, while that for SFCM and FCM clustering are between 35.7 and 64.3% and 69.8 and 82.2%, respectively, and for K-means, the range varies from 69.8 to 81.4%. It needs to be noted that the total number of grids with floating plastics in real-world data considered in this study is 59, which needs to be increased considerably to improve model performance. Training data from other parts of the world needs to be collected to investigate the performance of the classification algorithms at a global scale.


2021 ◽  
Vol 13 (24) ◽  
pp. 5064
Author(s):  
Yanpeng Yang ◽  
Dong Yang ◽  
Xufeng Wang ◽  
Zhao Zhang ◽  
Zain Nawaz

The Qilian Mountains (QLM) are an important ecological barrier in western China. High-precision land cover data products are the basic data for accurately detecting and evaluating the ecological service functions of the QLM. In order to study the land cover in the QLM and performance of different remote sensing classification algorithms for land cover mapping based on the Google Earth Engine (GEE) cloud platform, the higher spatial resolution remote sensing images of Sentinel-1 and Sentinel-2; digital elevation data; and three remote sensing classification algorithms, including the support vector machine (SVM), the classification regression tree (CART), and the random forest (RF) algorithms, were used to perform supervised classification of Sentinel-2 images of the QLM. Furthermore, the results obtained from the classification process were compared and analyzed by using different remote sensing classification algorithms and feature-variable combinations. The results indicated that: (1) the accuracy of the classification results acquired by using different remote sensing classification algorithms were different, and the RF had the highest classification accuracy, followed by the CART and the SVM; (2) the different feature variable combinations had different effects on the overall accuracy (OA) of the classification results and the performance of the identification and classification of the different land cover types; and (3) compared with the existing land cover products for the QLM, the land cover maps obtained in this study had a higher spatial resolution and overall accuracy.


Sign in / Sign up

Export Citation Format

Share Document