Predictive habitat suitability models for Teucrium polium L. using boosted regression trees

2022 ◽  
pp. 245-254
Author(s):  
Soroor Rahmanian ◽  
Soheila Pouyan ◽  
Sahar Karami ◽  
Hamid Reza Pourghasemi
2021 ◽  
pp. 1-28
Author(s):  
Niels Jorgensen ◽  
Mark Renz

Abstract Land managers require tools that improve understanding of suitable habitat for invasive plants and be incorporated into survey efforts to improve efficiency. Habitat suitability models contain attributes that can meet these requirements, but it is not known how well they perform as they are rarely field tested for accuracy. We developed ensemble habitat suitability models in the state of Wisconsin for 15 species using five algorithms (boosted regression trees, generalized linear models, multivariate regression splines, MaxEnt, and random forests), evaluated performance, determined variables that drive suitability, and tested accuracy. All models had good model performance during the development phase (AUC>0.7 and TSS>0.4). While variable importance and directionality was species specific, the most important predictor variables across all of the species’ models were mean winter minimum temperatures, total summer precipitation and tree canopy cover. Post model development we obtained 5,005 new occurrence records from community science observations for all 15 focal species to test the models’ abilities to accurately predict results. Using a correct classification rate of 80%, just 8 of the 15 species correctly predicted suitable habitat (α≤0.05). Exploratory analyses found the number of reporters of these new data and the total number of new occurrences reported per species contributed to increasing correct classification. Results suggest that while some models perform well on evaluation metrics, relying on these metrics alone is not sufficient and can lead to errors when utilized for surveying. We recommend any model should be tested for accuracy in the field prior to use to avoid this potential issue.


2003 ◽  
Author(s):  
Michael A. Larson ◽  
William D. Dijak ◽  
Frank R. III Thompson ◽  
Joshua J. Millspaugh

2016 ◽  
Vol 42 (2) ◽  
pp. 21-39
Author(s):  
Nadjia Fertout-Mouri ◽  
Ali Latrèche ◽  
Zoheir Mehdadi ◽  
Soror Akli-Djaaboub ◽  
Adel Akli

2021 ◽  
Author(s):  
Francesco Cerasoli ◽  
Aurélien Besnard ◽  
Marc‐Antoine Marchand ◽  
Paola D'Alessandro ◽  
Mattia Iannella ◽  
...  

Caldasia ◽  
2021 ◽  
Vol 43 (2) ◽  
pp. 412-415
Author(s):  
José Rogelio Prisciliano-Vázquez ◽  
Elena Galindo-Aguilar ◽  
Mario César Lavariega ◽  
María Delfina Luna-Krauletz ◽  
Mayra Karen Espinoza-Ramírez ◽  
...  

The jaguar (Panthera onca) has been experiencing a considerable range reduction due to habitat loss and poaching. Habitat suitability models have identified areas likely to maintain populations, but field data are scarce for several of them. Between 2012 and 2017, we investigated the jaguar occurrence in 35 communities of the Chinantla region, southern Mexico, throughout camera trapping in non-systematic surveys. We recorded 124 independent events of 23 jaguars in thirteen communities. Jaguars recorded over the years, couples and pregnant females are highlighted in the Chinantla region as a stronghold to the jaguar.


2017 ◽  
Vol 07 (05) ◽  
pp. 859-875 ◽  
Author(s):  
Brigitte Colin ◽  
Samuel Clifford ◽  
Paul Wu ◽  
Samuel Rathmanner ◽  
Kerrie Mengersen

2017 ◽  
Vol 3 (1) ◽  
pp. 55-75 ◽  
Author(s):  
Kate Ingenloff

AbstractBackground: Although pelagic seabirds are broadly recognised as indicators of the health of marine systems, numerous gaps exist in knowledge of their at-sea distributions at the species level. These gaps have profound negative impacts on the robustness of marine conservation policies. Correlative modelling techniques have provided some information, but few studies have explored model development for non-breeding pelagic seabirds. Here, I present a first phase in developing robust niche models for highly mobile species as a baseline for further development. Methodology: Using observational data from a 12-year time period, 217 unique model parameterisations across three correlative modelling algorithms (boosted regression trees, Maxent and minimum volume ellipsoids) were tested in a time-averaged approach for their ability to recreate the at-sea distribution of non-breeding Wandering Albatrosses (Diomedea exulans) to provide a baseline for further development. Principle Findings/Results: Overall, minimum volume ellipsoids outperformed both boosted regression trees and Maxent. However, whilst the latter two algorithms generally overfit the data, minimum volume ellipsoids tended to underfit the data. Conclusions: The results of this exercise suggest a necessary evolution in how correlative modelling for highly mobile species such as pelagic seabirds should be approached. These insights are crucial for understanding seabird-environment interactions at macroscales, which can facilitate the ability to address population declines and inform effective marine conservation policy in the wake of rapid global change.


2020 ◽  
Vol 12 (4) ◽  
pp. 1396
Author(s):  
Shufang Wang ◽  
Xiyun Jiao ◽  
Liping Wang ◽  
Aimin Gong ◽  
Honghui Sang ◽  
...  

The simulation and prediction of the land use changes is generally carried out by cellular automata—Markov (CA-Markov) model, and the generation of suitable maps collection is subjective in the simulation process. In this study, the CA-Markov model was improved by the Boosted Regression Trees (BRT) to simulate land use to make the model objectively. The weight of ten driving factors of the land use changes was analyzed in BRT, in order to produce the suitable maps collection. The accuracy of the model was verified. The outcomes represent a match of over 84% between simulated and actual land use in 2015, and the Kappa coefficient was 0.89, which was satisfactory to approve the calibration process. The land use of Hotan Oasis in 2025 and 2035 were predicted by means of this hybrid model. The area of farmland, built-up land and water body in Hotan Oasis showed an increasing trend, while the area of forestland, grassland and unused land continued to show a decreasing trend in 2025 and 2035. The government needs to formulate measures to improve the utilization rate of water resources to meet the growth of farmland, and need to increase ecological environment protection measures to curb the reduction of grass land and forest land for the ecological health.


Sign in / Sign up

Export Citation Format

Share Document