STUDIES IN A SHALLOW WATER FLUID MODEL WITH TOPOGRAPHY

Author(s):  
B. Neta ◽  
R.T. Williams ◽  
D.E. Hinsman
Keyword(s):  
2018 ◽  
Author(s):  
José Manuel González-Vida ◽  
Jorge Macías ◽  
Manuel Jesús Castro ◽  
Carlos Sánchez-Linares ◽  
Marc de la Asunción ◽  
...  

Abstract. The 1958 Lituya Bay landslide-generated mega-tsunami is simulated using the Landslide-HySEA model, a recently developed finite volume Savage-Hutter Shallow Water coupled numerical model. Two factors are crucial if the main objective of the numerical simulation is to reproduce the maximal run-up, with an accurate simulation of the inundated area and a precise re-creation of the known trimline of the 1958 mega-tsunami of Lituya Bay. First, the accurate reconstruction of the initial slide. Then, the choice of a suitable coupled landslide-fluid model able to reproduce how the energy released by the landslide is transmitted to the water and then propagated. Given the numerical model, the choice of parameters appears to be a point of major importance, this leads us to perform a sensitivity analysis. Based on public domain topo-bathymetric data, and on information extracted from the work of Miller (1960), an approximation of Gilbert Inlet topo-bathymetry was set up and used for the numerical simulation of the mega-event. Once optimal model parameters were set, comparisons with observational data were performed in order to validate the numerical results. In the present work, we demonstrate that a shallow water type of model is able to accurately reproduce such an extreme event as the Lituya Bay mega-tsunami. The resulting numerical simulation is one of the first successful attempts (if not the first) at numerically reproducing in detail the main features of this event in a realistic 3D basin geometry, where no smoothing or other stabilizing factors in the bathymetric data are applied.


Author(s):  
Marco Germano Conte ◽  
Cristiane Cozin ◽  
Fausto Arinos Barbuto ◽  
Rigoberto E. M. Morales

Two-phase slug flow is present in many industrial processes, such as the exploitation and transportation of hydrocarbon mixtures from oil wells. This kind of flow is characterized by two distinct structures which repeat intermittently: a liquid slug with a large amount of momentum followed by a compressible gas bubble. In recent decades, a few models for simulating such complex flows were developed, as the eulerian two-fluid model and drift flux, and the lagrangian slug tracking. The aim of this work is to present a detailed study on the numerical implementation of the hybrid model proposed by Fabien Renault and Nydal which is able to track down waves that arise in the gas-liquid interface and possible slugs generated by them. This model was developed from the two-fluid model equations in which the motion generated by the dynamic pressure of the gas on the slugs is decoupled from the slow movement of the liquid below the gas. The movement of the bubbles in the liquid is then modeled similarly to shallow-water equations. The solution of the equation set is achieved in two steps. The first step provides the pressure field and the gas flow through the numerical solution of the equations for the gas, using the finite difference method. The second step solves the adapted shallow-water equations analytically. The model was coded in object-oriented Intel Visual Fortran95. Simulations to analyze the ability of the code to generate slugs for some pairs of water-air superficial velocities at atmospheric pressure were carried out. The results, as the distribution of the slug length, frequency and average values were compared to experimental results reported in the literature.


2019 ◽  
Vol 19 (2) ◽  
pp. 369-388 ◽  
Author(s):  
José Manuel González-Vida ◽  
Jorge Macías ◽  
Manuel Jesús Castro ◽  
Carlos Sánchez-Linares ◽  
Marc de la Asunción ◽  
...  

Abstract. The 1958 Lituya Bay landslide-generated mega-tsunami is simulated using the Landslide-HySEA model, a recently developed finite-volume Savage–Hutter shallow water coupled numerical model. Two factors are crucial if the main objective of the numerical simulation is to reproduce the maximal run-up with an accurate simulation of the inundated area and a precise recreation of the known trimline of the 1958 mega-tsunami of Lituya Bay: first, the accurate reconstruction of the initial slide and then the choice of a suitable coupled landslide–fluid model able to reproduce how the energy released by the landslide is transmitted to the water and then propagated. Given the numerical model, the choice of parameters appears to be a point of major importance, which leads us to perform a sensitivity analysis. Based on public domain topo-bathymetric data, and on information extracted from the work of Miller (1960), an approximation of Gilbert Inlet topo-bathymetry was set up and used for the numerical simulation of the mega-event. Once optimal model parameters were set, comparisons with observational data were performed in order to validate the numerical results. In the present work, we demonstrate that a shallow water type of model is able to accurately reproduce such an extreme event as the Lituya Bay mega-tsunami. The resulting numerical simulation is one of the first successful attempts (if not the first) at numerically reproducing, in detail, the main features of this event in a realistic 3-D basin geometry, where no smoothing or other stabilizing factors in the bathymetric data are applied.


2020 ◽  
Vol 649 ◽  
pp. 125-140
Author(s):  
DS Goldsworthy ◽  
BJ Saunders ◽  
JRC Parker ◽  
ES Harvey

Bioregional categorisation of the Australian marine environment is essential to conserve and manage entire ecosystems, including the biota and associated habitats. It is important that these regions are optimally positioned to effectively plan for the protection of distinct assemblages. Recent climatic variation and changes to the marine environment in Southwest Australia (SWA) have resulted in shifts in species ranges and changes to the composition of marine assemblages. The goal of this study was to determine if the current bioregionalisation of SWA accurately represents the present distribution of shallow-water reef fishes across 2000 km of its subtropical and temperate coastline. Data was collected in 2015 using diver-operated underwater stereo-video surveys from 7 regions between Port Gregory (north of Geraldton) to the east of Esperance. This study indicated that (1) the shallow-water reef fish of SWA formed 4 distinct assemblages along the coast: one Midwestern, one Central and 2 Southern Assemblages; (2) differences between these fish assemblages were primarily driven by sea surface temperature, Ecklonia radiata cover, non-E. radiata (canopy) cover, understorey algae cover, reef type and reef height; and (3) each of the 4 assemblages were characterised by a high number of short-range Australian and Western Australian endemic species. The findings from this study suggest that 4, rather than the existing 3 bioregions would more effectively capture the shallow-water reef fish assemblage patterns, with boundaries having shifted southwards likely associated with ocean warming.


2011 ◽  
Vol 181 (11) ◽  
pp. 1222 ◽  
Author(s):  
Aleksandr G. Luchinin ◽  
Aleksandr I. Khil'ko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document