Short Term Determination of the Actual Respiration Rate of Intact Plant Roots

Author(s):  
H.M. HELAL ◽  
D. SAUERBECK
Author(s):  
O. Yu. Atkov ◽  
S. G. Gorokhova

The individual dynamics of the allostatic load index was revealed mainly due to changes in the glucose level, body mass index, which makes it applicable for assessing the short-term adaptation to the stay in the conditions of shift work


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


2015 ◽  
Vol 12 (7) ◽  
pp. 2089-2099 ◽  
Author(s):  
A. Angert ◽  
D. Yakir ◽  
M. Rodeghiero ◽  
Y. Preisler ◽  
E. A. Davidson ◽  
...  

Abstract. Soil respiration is the sum of respiration processes in the soil and is a major flux in the global carbon cycle. It is usually assumed that the CO2 efflux is equal to the soil respiration rate. Here we challenge this assumption by combining measurements of CO2 with high-precision measurements of O2. These measurements were conducted on different ecosystems and soil types and included measurements of air samples taken from the soil profile of three Mediterranean sites: a temperate forest and two alpine forests. Root-free soils from the alpine sites were also incubated in the lab. We found that the ratio between the CO2 efflux and the O2 influx (defined as apparent respiratory quotient, ARQ) was in the range of 0.14 to 1.23 and considerably deviated from the value of 0.9 ± 0.1 expected from the elemental composition of average plants and soil organic matter. At the Mediterranean sites, these deviations are explained as a result of CO2 dissolution in the soil water and transformation to bicarbonate ions in these high-pH soils, as well as by carbonate mineral dissolution and precipitation processes. Thus, a correct estimate of the short-term, chamber-based biological respiratory flux in such soils can only be made by dividing the measured soil CO2 efflux by the average (efflux-weighted) soil profile ARQ. Applying this approach to a semiarid pine forest resulted in an estimated short-term biological respiration rate that is 3.8 times higher than the chamber-measured surface CO2. The ARQ values often observed in the more acidic soils were unexpectedly low (< 0.7). These values probably result from the oxidation of reduced iron, which has been formed previously during times of high soil moisture and local anaerobic conditions inside soil aggregates. The results reported here provide direct quantitative evidence of a large temporal decoupling between soil–gas exchange fluxes and biological soil respiration.


1960 ◽  
Vol 32 (2) ◽  
pp. 295-296 ◽  
Author(s):  
Dietrich. Hoffmann ◽  
E. L. Wynder

Author(s):  
Alan Hedge

An ergonomic framework for conceptualizing and measuring office productivity is described. This framework is based on the the analysis of task time, posture and sequence, and the subsequent the determination of the most appropriate pace, posture, and activities for any office job. The framework assesses various measures of pace, proficiency, and posture that currently can be readily assessed by ergonomists, and it uses these measures to quantify the short-term duty cycle productivity (DCP) and in the longer-term life-cycle productivity (LCP) of office workers. The approach that will be described allows companies to evaluate the impact of ergonomic interventions on the productivity of their workers. The benefits of this ergonomic approach to assessing productivity are discussed.


Sign in / Sign up

Export Citation Format

Share Document