Estimation of Natural Frequency and Damping Factor for Dynamic Soil Structure Interaction Systems

Author(s):  
F. Miura ◽  
K. Toki
1968 ◽  
Vol 58 (3) ◽  
pp. 891-916
Author(s):  
Paul C. Jennings ◽  
Julio H. Kuroiwa

abstract The Millikan Library Building, a nine-story reinforced concrete shear-wall structure at the California Institute of Technology, was tested dynamically by means of two eccentric mass vibration generators located on the ninth floor. The response levels ranged up to a maximum acceleration of 0:02 g. The natural periods of vibration, the mode shapes and the energy dissipation were measured for the first and second E-W translational modes, the N-S fundamental mode and the first torsional mode. Soil-structure interaction was investigated by measuring foundation motion and nearby soil surface movements during resonent vibrations in the N-S and E-W fundamental modes. Other tests included “man-excited” vibrations at low stress levels and a measurement of resonance of an air handling unit on the roof, which was found to magnify the roof response by a factor of 8.5. The measured fundamental periods were short compared to typical framed structures of this height, 0.50 sec in the N-S direction, 0.66 in the E-W direction and 0.46 in torsion. These values increased roughly 3 per cent over the range of testing. The energy dissipation as measured by a viscous damping factor, varied between 0.70 and 2.00 per cent of critical. This large variation over the testing range indicates that tests at higher stresses are needed to determine the energy dissipation expected during the response to strong earthquake motions. The soil-structure interaction measurements showed that the building responded very nearly as if fixed at the foundation; rocking contributed less than 1 per cent to the total roof motions of the structure and foundation translation about 2 per cent. Although negligible as far as the building motion is concerned, the results demonstrate the possibility of performing full-scale soil-structure interaction experiments.


Author(s):  
Toshio Iwasaki ◽  
Kazuhiko Kawashima

In analyzing seismic behaviour of highway bridges constructed on soft soil deposits, it is important to take account of soil-structure interaction effects. In this paper, seismic response of a bridge pier-foundation is investigated based on earthquake acceleration records measured simultaneously on the pier crest and on the ground surface near that bridge. Four motions were used in the analysis, i.e., two were induced by two earthquakes with magnitudes of 7.5 and 6.6, respectively; and two by their aftershocks. In the former two earthquakes, the maximum accelerations were 186 and 438 gals on the ground surface, and 310 and 230 gals on the pier top, respectively. Analyses of frequency characteristics of the motions showed that the predominant frequencies of pier-foundation were always approximately identical with the fundamental natural frequency of the subsoil. Analyses of micro-tremors measured at the sites revealed that the natural frequency of the pier-foundation system is higher than the fundamental natural frequency of the subsoil. Analytical models were formulated to calculate the seismic response of the pier-foundation assuming the subsoil and pier-foundation to be a shear column model with an equivalent linear shear modulus and an elastically supported beam on the subsoil, respectively. Bedrock motions were computed from the measured ground surface motions and then applied to the bedrock of the analytical model. The seismic responses of pier-foundation were thus calculated and compared with the measured records giving a good agreement.


Author(s):  
Laura Kerner ◽  
Selim Benfeddoul ◽  
Jean-Claude Dupla ◽  
Gwendal Cumunel ◽  
Jean Canou ◽  
...  

Offshore Wind Turbines (OWT) are slender structures with sensitive dynamics, strongly influenced by the soil-structure interaction. The structure is subjected to cyclic and dynamic loads with frequencies close to the first natural frequency of the offshore wind turbine. To avoid any resonance phenomenon, a precise evaluation of the initial first natural frequency of the wind turbine is essential. The present work deals with the evaluation of the natural frequency of an OWT’s scaled model with monopile foundation. The main factor influencing the natural frequency is the soil-structure interaction which needs to be assessed precisely. To do so, a simple method presented by [Adhikari and Bhattacharya, 2012] assimilates the offshore wind turbine as an Euler-Bernoulli beam on a flexible foundation with lateral and rotational springs. The key factor in the evaluation of the natural frequency is the value of the stiffness of these springs. In this way, this paper presents a method combining experimental measurements and a finite element model on Abaqus which allows a precise evaluation of the stiffness of the springs. The proposed method is compared to the existing methods used to evaluate the soil’s stiffness (such as [Eurocode 8, 2003]). The suggested method gives a fine evaluation of the response of the structure with a mean deviation below 1%, compared to the average errors obtained for the previous methods ranging from 6.6 to 17.4%.


2017 ◽  
Vol 3 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Pouyan Abbasi Maedeh ◽  
Ali Ghanbari ◽  
Wei Wu

The main purpose of this study is to establish the effects of vessel walls flexibility on its natural sloshing frequency considering soil-structure-fluid interaction theory. Furthermore, two new efficiently relations to find both of wall flexibility and soil-structure interaction effects on natural frequency are developed. Regarding the aim of current study three different conditions of elevated tanks are applied. Fixed base condition with an emphasis on recommendations of international code ACI-350, analytical FSSI regarding equivalent mass spring method, and the numerical direct method regarding theory of finite element are taken into consideration. Results indicate that there is no significant effect of walls flexibility on natural sloshing frequency regarding fixed base assumptions of vessels. On the contrary, significant effects of wall flexibility are achieved considering SSI theory. Results of international code ACI-350 show that, the international codes assumptions have imprecise estimations of natural sloshing frequency in the range of hard to very soft soil categories.  On the other hand, it is observed that the wall flexibility has a more highlighted effect on natural frequency in soft soils rather than soil-structure interaction. The significance of wall flexibility effect on natural frequency is more than that of SSI considering soil softening.


Sign in / Sign up

Export Citation Format

Share Document