Soil-Structure Interface Effects on Dynamic Interaction Analysis of Reinforced Concrete Lifelines

Author(s):  
Y. Chen ◽  
T. Krauthammer
2021 ◽  
Vol 44 (2) ◽  
pp. 1-12
Author(s):  
Yago Ryan Pinheiro dos Santos ◽  
Maria Isabela Marques da Cunha Vieira Bello ◽  
Alexandre Duarte Gusmão ◽  
Jonny Dantas Patricio

Soil-structure interaction (SSI) evaluates how soil or rock deformability imposes on the structure a different load path in a hypothesis of fixed supports, altering the loads acting on the structural elements and the ground. This paper discusses the results of the SSI effects in two buildings with a reinforced concrete structure and shallow foundations in a rock mass. The settlements were monitored by field instrumentation in five stages of their construction, making it possible to estimate through interpolation curves the settlements values of some points. The numerical modeling and structural analysis of the buildings were obtained for two different cases of soil-structure interaction. The structure was considered having fixed supports (non-displaceable) and displaceable supports (with stiffness spring coefficients K). The results reveals the occurrence of SSI effects, with a load redistribution between the columns that occurred differently for the different construction stages. Structural modeling proved to be quite representative, pointing to higher vertical load values than the average values present in building edge zones, which contradicts the conventional idea that central columns are more loaded than the edge columns. The soil-structure interaction analyses resulted in different behaviors regarding both towers; pointing out that low settlements and building symmetry in plan minimize the effects of interaction, with no tendency of load redistribution between columns as the structure rigidity increases, as construction development.


Author(s):  
Charles J. Oswald

Measurements made on a long span reinforced concrete arch culvert under 7.3 m (24 ft) of silty clay backfill were compared with results from finite-element analyses of the soil-structure system using the CANDE finite-element code. The culvert strains and deflections and the soil pressure on the culvert were measured during construction and during the following 2.5 years at three instrumented cross sections. The CANDE program was modified to account for the effects of concrete creep and shrinkage strains after it was noted that the measured postconstruction culvert deflection and strains increased significantly whereas the measured soil pressure on the culvert remained relatively constant. Good agreement was generally obtained between measured and calculated values of the culvert strain and deflection and the soil pressure during the entire monitoring period after the code was modified.


Author(s):  
Frederick Tajirian ◽  
Mansour Tabatabaie ◽  
Basilio Sumodobila ◽  
Stephen Paulson ◽  
Bill Davies

The design of steel jacket fixed offshore structures in zones of moderate seismicity is typically governed by Metocean loads. In contrast the steel gravity structure (SGS) presented in this paper, is a heavy and stiff structure. The large mass results in foundation forces from seismic events that may exceed those created by extreme cyclonic storm events. When computing the earthquake response of such structures it is essential to account for soil-structure interaction (SSI) effects. Seismic SSI analysis of the SGS platform was performed using state-of-the-art SSI software, which analyzed a detailed three-dimensional model of the SGS supported on layered soil system. The results of this analysis were then compared with those using industry standard impedance methods whereby the layered soil is replaced by equivalent foundation springs (K) and damping (C). Differences in calculated results resulting from the different ways by which K and C are implemented in different software are presented. The base shear, overturning moment, critical member forces and maximum accelerations were compared for each of the analysis methods. SSI resulted in significant reduction in seismic demands. While it was possible to get reasonable alignment using the different standard industry analysis methods, this was only possible after calibrating the KC foundation model with software that rigorously implements SSI effects. Lessons learned and recommendations for the various methods of analysis are summarized in the paper.


Sign in / Sign up

Export Citation Format

Share Document