How Do Voltage-Gated Channels Sense the Membrane Potential?

2003 ◽  
pp. 209-214 ◽  
Author(s):  
Chris S. Gandhi ◽  
Ehud Y. Isacoff
2021 ◽  
Vol 28 (1) ◽  
pp. 116-154
Author(s):  
Abdallah Barjas Qaswal ◽  
Omar Ababneh ◽  
Lubna Khreesha ◽  
Abdallah Al-Ani ◽  
Ahmad Suleihat ◽  
...  

Voltage-gated channels are crucial in action potential initiation and propagation and there are many diseases and disorders related to them. Additionally, the classical mechanics are the main mechanics used to describe the function of the voltage-gated channels and their related abnormalities. However, the quantum mechanics should be considered to unravel new aspects in the voltage-gated channels and resolve the problems and challenges that classical mechanics cannot solve. In the present study, the aim is to mathematically show that quantum mechanics can exhibit a powerful tendency to unveil novel electrical features in voltage-gated channels and be used as a promising tool to solve the problems and challenges in the pathophysiology of excitability-related diseases. The model of quantum tunneling of ions through the intracellular hydrophobic gate is used to evaluate the influence of membrane potential and gating free energy on the tunneling probability, single channel conductance, and quantum membrane conductance. This evaluation is mainly based on graphing the mathematical relationships between these variables. The obtained mathematical graphs showed that ions can achieve significant quantum membrane conductance, which can affect the resting membrane potential and the excitability of cells. In the present work, quantum mechanics reveals original electrical properties associated with voltage-gated channels and introduces new insights and implications into the pathophysiology of excitability- related disorders. In addition, the present work sets a mathematical and theoretical framework that can be utilized to conduct experimental studies in order to explore the quantum aspects of voltage-gated channels and the quantum bioelectrical property of biological membranes.


2011 ◽  
Vol 138 (1) ◽  
pp. 95-116 ◽  
Author(s):  
James A. Fraser ◽  
Christopher L.-H. Huang ◽  
Thomas H. Pedersen

Activation of skeletal muscle fibers requires rapid sarcolemmal action potential (AP) conduction to ensure uniform excitation along the fiber length, as well as successful tubular excitation to initiate excitation–contraction coupling. In our companion paper in this issue, Pedersen et al. (2011. J. Gen. Physiol. doi:10.1085/jgp.201010510) quantify, for subthreshold stimuli, the influence upon both surface conduction velocity and tubular (t)-system excitation of the large changes in resting membrane conductance (GM) that occur during repetitive AP firing. The present work extends the analysis by developing a multi-compartment modification of the charge–difference model of Fraser and Huang to provide a quantitative description of the conduction velocity of actively propagated APs; the influence of voltage-gated ion channels within the t-system; the influence of t-system APs on ionic homeostasis within the t-system; the influence of t-system ion concentration changes on membrane potentials; and the influence of Phase I and Phase II GM changes on these relationships. Passive conduction properties of the novel model agreed with established linear circuit analysis and previous experimental results, while key simulations of AP firing were tested against focused experimental microelectrode measurements of membrane potential. This study thereby first quantified the effects of the t-system luminal resistance and voltage-gated Na+ channel density on surface AP propagation and the resultant electrical response of the t-system. Second, it demonstrated the influence of GM changes during repetitive AP firing upon surface and t-system excitability. Third, it showed that significant K+ accumulation occurs within the t-system during repetitive AP firing and produces a baseline depolarization of the surface membrane potential. Finally, it indicated that GM changes during repetitive AP firing significantly influence both t-system K+ accumulation and its influence on the resting membrane potential. Thus, the present study emerges with a quantitative description of the changes in membrane potential, excitability, and t-system ionic homeostasis that occur during repetitive AP firing in skeletal muscle.


1999 ◽  
Vol 81 (2) ◽  
pp. 535-543 ◽  
Author(s):  
Erik P. Cook ◽  
Daniel Johnston

Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. We examined the hypothesis that voltage-dependent properties of dendrites allow for the accurate transfer of synaptic information to the soma independent of synapse location. This hypothesis is motivated by experimental evidence that dendrites contain a complex array of voltage-gated channels. How these channels affect synaptic integration is unknown. One hypothesized role for dendritic voltage-gated channels is to counteract passive cable properties, rendering all synapses electrotonically equidistant from the soma. With dendrites modeled as passive cables, the effect a synapse exerts at the soma depends on dendritic location (referred to as location-dependent variability of the synaptic input). In this theoretical study we used a simplified three-compartment model of a neuron to determine the dendritic voltage-dependent properties required for accurate transfer of synaptic information to the soma independent of synapse location. A dendrite that eliminates location-dependent variability requires three components: 1) a steady-state, voltage-dependent inward current that together with the passive leak current provides a net outward current and a zero slope conductance at depolarized potentials, 2) a fast, transient, inward current that compensates for dendritic membrane capacitance, and 3) both αamino-3-hydroxy-5-methyl-4-isoxazolepropionic acid– and N-methyl-d-aspartate–like synaptic conductances that together permit synapses to behave as ideal current sources. These components are consistent with the known properties of dendrites. In addition, these results indicate that a dendrite designed to eliminate location-dependent variability also actively back-propagates somatic action potentials.


Author(s):  
Ebrahim Lari ◽  
Leslie T. Buck

In most vertebrates, anoxia drastically reduces the production of the essential adenosine triphosphate (ATP) to power its many necessary functions, and consequently, cell death occurs within minutes. However, some vertebrates, such as the painted turtle (Chrysemys picta bellii), have evolved the ability to survive months without oxygen by simultaneously decreasing ATP supply and demand, surviving the anoxic period without any apparent cellular damage. The impact of anoxia on the metabolic function of painted turtles has received a lot of attention. Still, the impact of low temperature has received less attention and the interactive effect of anoxia and temperature even less. In the present study, we investigated the interactive impacts of reduced temperature and severe hypoxia on the electrophysiological properties of pyramidal neurons in painted turtle cerebral cortex. Our results show that an acute reduction in temperature from 20 to 5°C decreases membrane potential, action potential width and amplitude, and whole-cell conductance. Importantly, acute exposure to 5°C considerably slows membrane repolarization by voltage-gated K+ channels. Exposing pyramidal cells to severe hypoxia in addition to an acute temperature change slightly depolarized membrane potential but did not alter action potential amplitude or width and whole-cell conductance. These results suggest that acclimation to low temperatures, preceding severe environmental hypoxia, induces cellular responses in pyramidal neurons that facilitate survival under low oxygen concentration. In particular, our results show that temperature acclimation invokes a change in voltage-gated K+ channel kinetics that overcomes the acute inhibition of the channel.


2019 ◽  
Vol 29 (9) ◽  
pp. 1503-1511.e6 ◽  
Author(s):  
Katherine E. Helliwell ◽  
Abdul Chrachri ◽  
Julie A. Koester ◽  
Susan Wharam ◽  
Frédéric Verret ◽  
...  

2021 ◽  
Vol 61 (1) ◽  
pp. 381-400
Author(s):  
Emely Thompson ◽  
Jodene Eldstrom ◽  
David Fedida

Kv7 channels (Kv7.1–7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1–5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2–7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2–7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.


2008 ◽  
Vol 121 (22) ◽  
pp. 2272-2277 ◽  
Author(s):  
Yan-feng LI ◽  
Ye-hong ZHUO ◽  
Wei-na BI ◽  
Yu-jing BAI ◽  
Yan-na LI ◽  
...  

Author(s):  
Andrea E. Cavanna

Antiepileptic drugs (AEDs) exert their pharmacological properties on both epileptic seizures and behaviour through different mechanisms of action. These include modulation of ion (mainly sodium and calcium) conductance through voltage-gated channels located within the neuronal membrane, as well as facilitation of inhibitory (GABAergic) neurotransmission and inhibition of excitatory (glutamatergic) neurotransmission, resulting in regulation of neuronal excitability.


Sign in / Sign up

Export Citation Format

Share Document