Voltage-Dependent Properties of Dendrites That Eliminate Location-Dependent Variability of Synaptic Input

1999 ◽  
Vol 81 (2) ◽  
pp. 535-543 ◽  
Author(s):  
Erik P. Cook ◽  
Daniel Johnston

Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. We examined the hypothesis that voltage-dependent properties of dendrites allow for the accurate transfer of synaptic information to the soma independent of synapse location. This hypothesis is motivated by experimental evidence that dendrites contain a complex array of voltage-gated channels. How these channels affect synaptic integration is unknown. One hypothesized role for dendritic voltage-gated channels is to counteract passive cable properties, rendering all synapses electrotonically equidistant from the soma. With dendrites modeled as passive cables, the effect a synapse exerts at the soma depends on dendritic location (referred to as location-dependent variability of the synaptic input). In this theoretical study we used a simplified three-compartment model of a neuron to determine the dendritic voltage-dependent properties required for accurate transfer of synaptic information to the soma independent of synapse location. A dendrite that eliminates location-dependent variability requires three components: 1) a steady-state, voltage-dependent inward current that together with the passive leak current provides a net outward current and a zero slope conductance at depolarized potentials, 2) a fast, transient, inward current that compensates for dendritic membrane capacitance, and 3) both αamino-3-hydroxy-5-methyl-4-isoxazolepropionic acid– and N-methyl-d-aspartate–like synaptic conductances that together permit synapses to behave as ideal current sources. These components are consistent with the known properties of dendrites. In addition, these results indicate that a dendrite designed to eliminate location-dependent variability also actively back-propagates somatic action potentials.

1997 ◽  
Vol 78 (6) ◽  
pp. 3428-3437 ◽  
Author(s):  
L. A. Schrader ◽  
J. G. Tasker

Schrader, L. A. and J. G. Tasker. Modulation of multiple potassium currents by metabotropic glutamate receptors in neurons of the hypothalamic supraoptic nucleus. J. Neurophysiol. 78: 3428–3437, 1997. We studied the effects of activation of the metabotropic glutamate receptors on intrinsic currents of magnocellular neurons of the supraoptic nucleus (SON) with whole cell patch-clamp and conventional intracellular recordings in coronal slices (400 μm) of the rat hypothalamus. Trans-(±)-1-amino-1,3-cyclopentane dicarboxylic acid ( trans-ACPD, 10–100 μM), a broad-spectrum metabotropic glutamate receptor agonist, evoked an inward current (18.7 ± 3.45 pA) or a slow depolarization (7.35 ± 4.73 mV) and a 10–30% decrease in whole cell conductance in ∼50% of the magnocellular neurons recorded at resting membrane potential. The decrease in conductance and the inward current were caused largely by the attenuation of a resting potassium conductance because they were reduced by the replacement of intracellular potassium with an equimolar concentration of cesium or by the addition of potassium channel blockers to the extracellular medium. In some cells, trans-ACPD still elicited a small inward current after blockade of potassium currents, which was abolished by the calcium channel blocker, CdCl2. Trans-ACPD also reduced voltage-gated and Ca2+-activated K+ currents in these cells. Trans-ACPD reduced the transient outward current ( I A) by 20–70% and/or the I A-mediated delay to spike generation in ∼60% of magnocellular neurons tested. The cells that showed a reduction of I A generally also showed a 20–60% reduction in a voltage-gated, sustained outward current. Finally, trans-ACPD attenuated the Ca2+-dependent outward current responsible for the afterhyperpolarization ( I AHP) in ∼60% of cells tested. This often revealed an underlying inward current thought to be responsible for the depolarizing afterpotential seen in some magnocellular neurons. (RS)-3,5-dihydroxyphenylglycine, a group I receptor-selective agonist, mimicked the effects of trans-ACPD on the resting and voltage-gated K+ currents. (RS)-α-methyl-4-carboxyphenylglycine, a group I/II metabotropic glutamate receptor antagonist, blocked these effects. A group II receptor agonist, 2S,1′S,2′S-2carboxycyclopropylglycine and a group III receptor agonist, l(+)-2-amino-4-phosphonobutyric acid, had no effect on the resting or voltage-gated K+ currents, indicating that the reduction of K+ currents was mediated by group I receptors. About 80% of the SON cells that were labeled immunohistochemically for vasopressin responded to metabotropic glutamate receptor activation, whereas only 33% of labeled oxytocin cells responded, suggesting that metabotropic receptors are expressed preferentially in vasopressinergic neurons. These data indicate that activation of the group I metabotropic glutamate receptors leads to an increase in the postsynaptic excitability of magnocellular neurons by blocking resting K+ currents as well as by reducing voltage-gated and Ca2+-activated K+ currents.


2001 ◽  
Vol 280 (6) ◽  
pp. L1138-L1147 ◽  
Author(s):  
Evangelos D. Michelakis ◽  
E. Kenneth Weir ◽  
Xichen Wu ◽  
Ali Nsair ◽  
Ross Waite ◽  
...  

Intrapulmonary veins (PVs) contribute to pulmonary vascular resistance, but the mechanisms controlling PV tone are poorly understood. Although smooth muscle cell (SMC) K+ channels regulate tone in most vascular beds, their role in PV tone is unknown. We show that voltage-gated (KV) and inward rectifier (Kir) K+ channels control resting PV tone in the rat. PVs have a coaxial structure, with layers of cardiomyocytes (CMs) arrayed externally around a subendothelial layer of typical SMCs, thus forming spinchterlike structures. PVCMs have both an inward current, inhibited by low-dose Ba2+, and an outward current, inhibited by 4-aminopyridine. In contrast, PVSMCs lack inward currents, and their outward current is inhibited by tetraethylammonium (5 mM) and 4-aminopyridine. Several KV, Kir, and large-conductance Ca2+-sensitive K+channels are present in PVs. Immunohistochemistry showed that Kir channels are present in PVCMs and PV endothelial cells but not in PVSMCs. We conclude that K+ channels are present and functionally important in rat PVs. PVCMs form sphincters rich in Kir channels, which may modulate venous return both physiologically and in disease states including pulmonary edema.


1995 ◽  
Vol 74 (4) ◽  
pp. 1485-1497 ◽  
Author(s):  
J. Schmidt ◽  
S. Gramoll ◽  
R. L. Calabrese

1. The effects of Phe-Met-Arg-Phe (FMRF)amide (10(-6) M) on membrane properties of heart interneurons in the third, fourth, and fifth segmental ganglia [HN(3), HN(4), and HN(5) cells, respectively] of the leech were studied using discontinuous current-clamp and single-electrode voltage-clamp techniques. FMRFamide was focally applied onto the soma of the cell under investigation. 2. Application of FMRFamide depolarized HN(3) and HN(4) cells by evoking an inward current. These responses were subject to pronounced desensitization. The inward currents evoked by application of FMRFamide were associated with an increase in membrane conductance and appeared to be voltage dependent. Currents were enhanced at more depolarized potentials. 3. The responsiveness of the HN(3) and HN(4) cells was not affected when the Ca2+ concentration in the bath saline was reduced from normal (1.8 mM) to 0.1 mM. The depolarizing response on application of FMRFamide was blocked when Co2+ was substituted for Ca2+. 4. HN(3) and HN(4) cells did not respond to FMRFamide application in Na(+)-free solution. Inward currents were largely reduced when bath saline with 30% of the normal Na+ concentration was used. When Li+ was substituted for Na+ in the saline, application of FMRFamide still evoked depolarizing responses in HN(3) and HN(4) cells. 5. We conclude that focal application of FMRFamide onto the somata of HN(3) and HN(4) cells evokes a voltage-dependent inward current, carried largely by Na+. 6. Focal application of FMRFamide onto somata of HN(5) cells hyperpolarized these cells by activating a voltage-dependent outward current. 7. HN(5) cells were loaded with Cl- until inhibitory postsynaptic potentials carried by Cl- reversed. Cl(-)-loaded cells still responded with a hyperpolarization when FMRFamide was applied onto their somata. Therefore the outward current evoked by FMRFamide appears to be mediated by a K+ conductance increase. 8. Application of FMRFamide onto the somata of HN(5) cells enhanced outward currents that were evoked by depolarizing voltage steps from a holding potential of -45 mV. 9. We conclude that the hyperpolarizing response of HN(5) cells to focal application of FMRFamide onto their somata is the result of an up-regulation of a voltage-dependent K+ current.


1982 ◽  
Vol 79 (2) ◽  
pp. 187-209 ◽  
Author(s):  
J E Lisman ◽  
G L Fain ◽  
P M O'Day

The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.


2004 ◽  
Vol 287 (5) ◽  
pp. C1396-C1403 ◽  
Author(s):  
Pavel Zhabyeyev ◽  
Tatsuya Asai ◽  
Sergey Missan ◽  
Terence F. McDonald

There have been periodic reports of nonclassic (4-aminopyridine insensitive) transient outward K+ current in guinea pig ventricular myocytes, with the most recent one describing a novel voltage-gated inwardly rectifying type. In the present study, we have investigated a transient outward current that overlaps inward Ca2+ current ( ICa,L) in myocytes dialyzed with 10 mM K+ solution and superfused with Tyrode’s solution. Although depolarizations from holding potential ( Vhp) −40 to 0 mV elicited relatively small inward ICa,L in these myocytes, removal of external K+ or addition of 0.2 mM Ba2+ more than doubled the amplitude of the current. The basis of the enhancement of ICa,L was the suppression of a large transient outward K+ current. Similar enhancement was observed when Vhp was moved to −80 mV and test depolarizations were preceded by short prepulses to −40 mV. Investigation of the time and voltage properties of the outward K+ transient indicated that it was inwardly rectifying and unlikely to be carried by voltage-gated channels. The outward transient was attenuated in myocytes dialyzed with high-Mg2+ solution, accelerated in myocytes dialyzed with 100 μM spermine solution, and abolished with time in myocytes dialyzed with ATP-free solution. These and other findings suggest that the outward transient is a component of classic “time-independent” inwardly rectifying K+ current.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Wenjing Sun ◽  
Elizabeth A Matthews ◽  
Vicky Nicolas ◽  
Susanne Schoch ◽  
Dirk Dietrich

Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca2+ signals mediated by low-voltage activated Ca2+ channels under strict inhibitory control of voltage-gated A-type K+ channels. Ca2+ signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca2+ signals by A-type channels and the global versus local signaling domains make intracellular Ca2+ in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination.


1991 ◽  
Vol 97 (1) ◽  
pp. 35-54 ◽  
Author(s):  
E Nasi

Voltage-dependent membrane currents were investigated in enzymatically dissociated photoreceptors of Lima scabra using the whole-cell clamp technique. Depolarizing steps to voltages more positive than -10 mV elicit a transient inward current followed by a delayed, sustained outward current. The outward current is insensitive to replacement of a large fraction of extracellular Cl- with the impermeant anion glucuronate. Superfusion with tetraethylammonium and 4-aminopyridine reversibly abolishes the outward current, and internal perfusion with cesium also suppresses it, indicating that it is mediated by potassium channels. Isolation of the inward current reveals a fast activation kinetics, the peak amplitude occurring as early as 4-5 ms after stimulus onset, and a relatively rapid, though incomplete inactivation. Within the range of voltages examined, spanning up to +90 mV, reversal was not observed. The inward current is not sensitive to tetrodotoxin at concentrations up to 10 microM, and survives replacement of extracellular Na with tetramethylammonium. On the other hand, it is completely eliminated by calcium removal from the perfusing solution, and it is partially blocked by submillimolar concentrations of cadmium, suggesting that it is entirely due to voltage-dependent calcium channels. Analysis of the kinetics and voltage dependence of the isolated calcium current indicates the presence of two components, possibly reflecting the existence of separate populations of channels. Barium and strontium can pass through these channels, though less easily than calcium. Both the activation and the inactivation become significantly more sluggish when these ions serve as the charge carrier. A large fraction of the outward current is activated by preceding calcium influx. Suppression of this calcium-dependent potassium current shows a small residual component resembling the delayed rectifier. In addition, a transient outward current sensitive to 4-aminopyridine (Ia) could also be identified. The relevance of such conductance mechanisms in the generation of the light response in Lima photoreceptors is discussed.


1993 ◽  
Vol 69 (1) ◽  
pp. 241-247 ◽  
Author(s):  
W. Muller ◽  
H. D. Lux

1. Numerical methods were used to evaluate voltage space-clamp performance in the investigation of a voltage-dependent inward current similar to the noninactivating Ca current. In addition, the cell is equipped with a repolarizing system, represented by leak and outwardly rectifying outward conductances. The electrotonically compact model cell is represented by a cable with an electrotonic length of 1 space constant under control conditions, but that becomes effectively only 0.33 space constants during a 90% reduction of the leak and outward conductance. The cable is perfectly voltage clamped at one end. 2. The apparent voltage dependence, activation, and inactivation of the clamp current depend on the distribution of the membrane slope conductance along the cable; this depends on 1) the distribution of the inward current along the cable and 2) the amplitude of the inward current relative to the amplitudes of the leak and voltage-dependent outward currents. 3. Under control conditions, the membrane voltage decays steeply with distance from the command voltage at the clamp site to almost resting potential for most of the rest of the cable. This is because the leak and outward current are dominant over the inward current. The inward current is activated primarily at the clamped part of the cable. Clamp currents are activated instantaneously. The clamp-current current-voltage (I-V) relation is less steep with depolarization because the membrane potential for locations away from the clamp site lags behind the clamp potential. 4. When the conductances for leak and outward current are reduced by 90%, these conductances lose their dominance. The membrane slope conductance now has a range with negative values.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 68 (2) ◽  
pp. 496-508 ◽  
Author(s):  
O. Kiehn ◽  
R. M. Harris-Warrick

1. Serotonergic modulation of a hyperpolarization-activated inward current, Ih, and a calcium-dependent outward current, Io(Ca), was examined in the dorsal gastric (DG) motor neuron, with the use of intracellular recording techniques in an isolated preparation of the crab stomatogastric ganglion (STG). 2. Hyperpolarization of the membrane from rest with maintained current pulses resulted in a slow time-dependent relaxation back toward rest and a depolarizing overshoot after termination of the current pulse. In voltage clamp, hyperpolarizing commands negative to approximately -70 mV caused a slowly developing inward current, Ih, which showed no inactivation. Repolarization back to the holding potential of -50 mV revealed a slow inward tail current. 3. The reversal potential for Ih was approximately -35 mV. Raising extracellular K+ concentration ([K+]o) from 11 to 22 mM enhanced, whereas decreasing extracellular Na+ concentration ([Na+]o) reduced the amplitude of Ih. These results indicate that Ih in DG is carried by both K+ and Na+ ions. 4. Bath application of serotonin (5-HT; 10 microM) caused a marked increase in the amplitude of Ih through its active voltage ranges. 5. The time course of activation of Ih was well fitted by a single exponential function and strongly voltage dependent. 5-HT increased the rate of activation of Ih. 5-HT also slowed the rate of deactivation of the Ih tail on repolarization to -50 mV. 6. The activation curve for the conductance (Gh) underlying Ih was obtained by analyzing tail currents. 5-HT shifted the half activation for Gh from approximately -105 mV in control to -95 mV, resulting in an increase in the amplitude of Gh active at rest. 7. Two to 4 mM Cs+ abolished Ih, whereas barium (200 microM to 2 mM) had only weak suppressing effects on Ih. Concomitantly, Cs+ also blocked the 5-HT-induced inward current and conductance increase seen at voltages negative to rest. In current clamp, Cs+ caused DG to hyperpolarize 3-4 mV from rest, suggesting that Ih is partially active at rest and contributes to the resting membrane potential. 8. Depolarizing voltage commands from a holding potential of -50 mV resulted in a total outward current (Io) with an initial transient component and a sustained steady-state component. Application of 5-HT reduced both the transient and sustained components of Io. 9. Io was reduced by 10-20 mM tetraethylammonium (TEA), suggesting that it is primarily a K+ current.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 96 (4) ◽  
pp. 809-834 ◽  
Author(s):  
K Sugimoto ◽  
J H Teeter

Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document