THERMAL PERFORMANCE OF SOLAR COLLECTORS USED IN THE NATIONAL SOLAR HEATING AND COOLING DEMONSTRATION PROGRAM

Author(s):  
Pandit G. Patil, Program Manager
2020 ◽  
Vol 5 ◽  
pp. 4
Author(s):  
Fernando Antonio de Melo Sá Cavalcanti ◽  
Rosana Maria Caram

In this paper, the thermal performance of a standard environment was evaluated based on the use of a Trombe wall with different configurations and types of use, as the potential for using this passive strategy is still little studied in Brazil. This device is capable of absorbing energy from solar radiation by heating the air in this greenhouse and this heated air can be directed to the interior or exterior of the building depending on the purpose. This air can be used to heat the room or cool it by means of natural ventilation. The analysis of this research was based on a series of computer simulations using the EnergyPlus software, version 7.0 in order to quantify and classify the thermal performance of a standard environment equipped with this component, under the various construction configurations. Both for heating and cooling environments. The use of Trombe walls improved the thermal comfort of users in buildings located in Brazil, depending on the climate where they are located, promoting natural ventilation and passive solar heating, allowing the potential of this device to be investigated in the most diverse Brazilian regions.


1977 ◽  
Author(s):  
David Waksman ◽  
Elmer R Streed ◽  
William E Greene ◽  
Thomas W Reichard ◽  
Walter D Urban

2005 ◽  
Vol 127 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Simon Furbo ◽  
Niels Kristian Vejen ◽  
Louise Jivan Shah

In year 2000 a 336 m2 solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank design ensures an excellent thermal stratification in the tank. The solar heating system was installed in May 2000. The thermal performance of the solar heating system has been measured in the first two years of operation. Compared to other large Danish solar domestic hot water systems the system is performing well in spite of the fact that the solar collectors are far from being orientated optimally. The utilization of the solar radiation on the collectors is higher, 46% in the second year of operation, than for any other system earlier investigated in Denmark, 16%–34%. The reason for the good thermal performance and for the excellent utilization of the solar radiation is the high hot-water consumption and the good system design making use of external heat exchangers and stratification inlet pipes.


Sign in / Sign up

Export Citation Format

Share Document