scholarly journals Analysis of the potential use of Trombe walls in Brazil: design recommendations

2020 ◽  
Vol 5 ◽  
pp. 4
Author(s):  
Fernando Antonio de Melo Sá Cavalcanti ◽  
Rosana Maria Caram

In this paper, the thermal performance of a standard environment was evaluated based on the use of a Trombe wall with different configurations and types of use, as the potential for using this passive strategy is still little studied in Brazil. This device is capable of absorbing energy from solar radiation by heating the air in this greenhouse and this heated air can be directed to the interior or exterior of the building depending on the purpose. This air can be used to heat the room or cool it by means of natural ventilation. The analysis of this research was based on a series of computer simulations using the EnergyPlus software, version 7.0 in order to quantify and classify the thermal performance of a standard environment equipped with this component, under the various construction configurations. Both for heating and cooling environments. The use of Trombe walls improved the thermal comfort of users in buildings located in Brazil, depending on the climate where they are located, promoting natural ventilation and passive solar heating, allowing the potential of this device to be investigated in the most diverse Brazilian regions.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1042 ◽  
Author(s):  
Shimeng Hao ◽  
Changming Yu ◽  
Yuejia Xu ◽  
Yehao Song

Achieving comfort in hot summer and cold winter (HSCW) climate zones can be challenging, since the climate is characterized by high temperatures in the summer and relatively colder temperatures in the winter. Courtyards, along with other semi-open spaces such as verandas and overhangs, play an important role in mitigating outdoor climate fluctuations. In this research, the effects of courtyards on the thermal performance of vernacular houses in HSCW climate zones were studied via field measurements and computational fluid dynamics (CFD) models. The selected courtyard house was a representative vernacular timber dwelling situated in the southeast of Chongqing, China. The indoor and outdoor air temperature measurements revealed that the courtyard did play an active role as a climatic buffer and significantly reduced the temperature’s peak value in the summer, while during the winter, the courtyard prevented the surrounding rooms from receiving direct solar radiation, and thus to some extent acted as a heat barrier. The contributions of thermal mass are quite limited in this area, due to insufficient solar radiation in winter and general building operations. The natural ventilation mechanism of courtyard houses in HSCW zones was further studied through CFD simulations. The selected opened courtyard was compared to an enclosed structure with similar building configurations. The airflow patterns driven by wind and buoyancy effects were first simulated separately, and then together, to illustrate the ventilation mechanisms. The simulation results show that the courtyard’s natural ventilation behavior benefited from the proper openings on ground level.


Author(s):  
Jianhua Fan ◽  
Zhiyong Tian ◽  
Simon Furbo ◽  
Weiqiang Kong ◽  
Daniel Tschopp

Solar radiation data is necessary for the design of solar heating systems and used to estimate the thermal performance of solar heating plants. Compared to global irradiance, the direct beam component shows much more variability in space and time. The global radiation split into beam and diffuse radiation on collector plane is important for the evaluation of the performance of different collector types and collector field designs.


2013 ◽  
Vol 448-453 ◽  
pp. 1537-1541 ◽  
Author(s):  
Xiao Wei Xu ◽  
Ya Xin Su

The natural ventilation in a novel built-in photovoltaic-Trombe wall (BiPV-TW) was numerically simulated by CFD method. The effect of solar radiation and channel width on the airflow pattern and ventilation rate was analyzed. Results showed that the solar radiation and channel width influenced the ventilation rate remarkably. As the solar radiation increased, the ventilation rate increased. As the channel width increased from 0.1m to 0.4m, the ventilation rate monotonously increased. However, when the channel width exceeded 0.5m, the reverse flow was formed in the tope zone and the ventilation rate decreased. A maximum air volume flow rate was achieved when the channel width was approximately equal to 0.4m in a 3m tall model.


2014 ◽  
Vol 567 ◽  
pp. 631-636
Author(s):  
Leng Pau Chung ◽  
Mohd Hamdan Ahmad ◽  
Dilshan Remaz Ossen ◽  
Malsiah Binti Hamid ◽  
Mohammad Baharvand

Thermal performance of terrace house in Malaysia very much depends on the spatial design due to limited responsive environment factors. Building orientation is one of the important responsive factors under design consideration. The main concerns of the opening’s orientation are solar radiation and wind. In Malaysia, the maximum amount of solar radiation directly affects the thermal performance and thus the orientation of the window should be designed in the way to minimize solar gain and maximize natural ventilation. This paper investigates the effect of building orientation on the thermal performance of the residential room with solar chimney. The case study house facing north was located at Kuching, Sarawak, Malaysia. The field measurement was conducted in the case study house compound on 16 may 2012 to obtain the boundaries condition for CFD (Computational Fluid Dynamic) simulation. Four cardinal orientations were selected to investigate the thermal performance via CFD in DesignBuilder. The results show that the south facing window could maintain the lowest air temperature in the indoor environment with mean air temperature of 31.78°C and air mean velocity 0.023m/s with 35°C extreme outdoor temperature and zero wind velocity.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4388
Author(s):  
Esmail Mahmoudi Saber ◽  
Issa Chaer ◽  
Aaron Gillich ◽  
Bukola Grace Ekpeti

Natural ventilation is gaining more attention from architects and engineers as an alternative way of cooling and ventilating indoor spaces. Based on building types, it could save between 13 and 40% of the building cooling energy use. However, this needs to be implemented and operated with a well-designed and integrated control system to avoid triggering discomfort for occupants. This paper seeks to review, discuss, and contribute to existing knowledge on the application of control systems and optimisation theories of naturally ventilated buildings to produce the best performance. The study finally presents an outstanding theoretical context and practical implementation for researchers seeking to explore the use of intelligent controls for optimal output in the pursuit to help solve intricate control problems in the building industry and suggests advanced control systems such as fuzzy logic control as an effective control strategy for an integrated control of ventilation, heating and cooling systems.


Sign in / Sign up

Export Citation Format

Share Document