A culture of striving augments use of working memory? Implications for attention control

Author(s):  
Tim Buszard ◽  
Rich S.W. Masters
2016 ◽  
Vol 37 (4) ◽  
pp. 239-249
Author(s):  
Xuezhu Ren ◽  
Tengfei Wang ◽  
Karl Schweizer ◽  
Jing Guo

Abstract. Although attention control accounts for a unique portion of the variance in working memory capacity (WMC), the way in which attention control contributes to WMC has not been thoroughly specified. The current work focused on fractionating attention control into distinctly different executive processes and examined to what extent key processes of attention control including updating, shifting, and prepotent response inhibition were related to WMC and whether these relations were different. A number of 216 university students completed experimental tasks of attention control and two measures of WMC. Latent variable analyses were employed for separating and modeling each process and their effects on WMC. The results showed that both the accuracy of updating and shifting were substantially related to WMC while the link from the accuracy of inhibition to WMC was insignificant; on the other hand, only the speed of shifting had a moderate effect on WMC while neither the speed of updating nor the speed of inhibition showed significant effect on WMC. The results suggest that these key processes of attention control exhibit differential effects on individual differences in WMC. The approach that combined experimental manipulations and statistical modeling constitutes a promising way of investigating cognitive processes.


2019 ◽  
Author(s):  
Jessie Martin ◽  
Jason S. Tsukahara ◽  
Christopher Draheim ◽  
Zach Shipstead ◽  
Cody Mashburn ◽  
...  

**The uploaded manuscript is still in preparation** In this study, we tested the relationship between visual arrays tasks and working memory capacity and attention control. Specifically, we tested whether task design (selection or non-selection demands) impacted the relationship between visual arrays measures and constructs of working memory capacity and attention control. Using analyses from 4 independent data sets we showed that the degree to which visual arrays measures rely on selection influences the degree to which they reflect domain-general attention control.


2019 ◽  
Author(s):  
Derek Ellis ◽  
Gene Arnold Brewer ◽  
Matthew Kyle Robison

An individual encounters problem of varying difficulty every day. Each problem may include a different number of constraints. Multiply-constrained problems, such as the compound remote associates, are commonly used to study problem solving. Since their development, multiply-constrained problems have been related to creativity and insight. Moreover, research has investigated the cognitive abilities underlying problem solving abilities. In the present study we sought to fully evaluate a range of cognitive abilities (i.e., working memory, attention control, episodic and semantic memory, and fluid and crystallized intelligence) previously associated with multiply-constrained problem solving. Additionally, we sought to determine whether problem solving ability and strategies (analytical or insightful) were task specific or domain general through the use of novel problem solving tasks (TriBond and Location Bond). Multiply-constrained problem solving abilities were shown to be domain general, solutions derived through insightful strategies were more often correct than those derived through analytical strategies, and crystallized intelligence was the only cognitive ability that provided unique predictive value after accounting for all other abilities.


2021 ◽  
Author(s):  
Alexander P. Burgoyne ◽  
Cody Mashburn ◽  
Jason S. Tsukahara ◽  
Zach Hambrick ◽  
Randall W Engle

A hallmark of intelligent behavior is rationality—the disposition and ability to think analytically to make decisions that maximize expected utility or follow the laws of probability, and therefore align with normative principles of decision making. However, the question remains as to whether rationality and intelligence are empirically distinct, as does the question of what cognitive mechanisms underlie individual differences in rationality. In a large sample of participants (N = 331), we used latent variable analyses to assess the relationship between rationality and intelligence. The results indicated that there was a common ability underpinning performance on some, but not all, rationality tests. Latent factors representing rationality and general intelligence were strongly correlated (r = .54), but their correlation fell well short of unity. Indeed, after accounting for variance in performance attributable to general intelligence, rationality measures still cohered on a latent factor. Confirmatory factor analysis indicated that rationality correlated significantly with fluid intelligence (r = .56), working memory capacity (r = .44), and attention control (r = .49). Structural equation modeling revealed that attention control fully accounted for the relationship between working memory capacity and rationality, and partially accounted for the relationship between fluid intelligence and rationality. Results are interpreted in light of the executive attention framework, which holds that attention control supports information maintenance and disengagement in service of complex cognition. We conclude by speculating about factors rationality tests may tap that other cognitive ability tests miss, and outline directions for further research.


2014 ◽  
Vol 71 ◽  
pp. 1-26 ◽  
Author(s):  
Nash Unsworth ◽  
Keisuke Fukuda ◽  
Edward Awh ◽  
Edward K. Vogel

2006 ◽  
Vol 18 (4) ◽  
pp. 637-650 ◽  
Author(s):  
Monica Fabiani ◽  
Kathy A. Low ◽  
Emily Wee ◽  
Jeffrey J. Sable ◽  
Gabriele Gratton

Cognitive aging theories emphasize the decrease in efficiency of inhibitory processes and attention control in normal aging, which, in turn, may result in reduction of working memory function. Accordingly, some of these age-related changes may be due to faster sensory memory decay or to inefficient filtering of irrelevant sensory information (sensory gating). Here, event-related brain potentials and the event-related optical signal were recorded in younger and older adults passively listening to tone trains. To determine whether age differentially affects decay of sensory memory templates over short intervals, trains were separated by delays of either 1 or 5 sec. To determine whether age affects the suppression of responses to unattended repeated stimuli, we evaluated the brain activity elicited by successive train stimuli. Some trains started with a shorter-duration stimulus (deviant trains). Results showed that both electrical and optical responses to tones were more persistent with repeated stimulation in older adults than in younger adults, whereas the effects of delay were similar in the two groups. A mismatch negativity (MMN) was elicited by the first stimulus in deviant trains. This MMN was larger for 1- than 5-sec delay, but did not differ across groups. These data suggest that age-related changes in sensory processing are likely due to inefficient filtering of repeated information, rather than to faster sensory memory decay. This inefficient filtering may be due to, or interact with, reduced attention control. Furthermore, it may increase the noise levels in the information processing system and thus contribute to problems with working memory and speed of processing.


Sign in / Sign up

Export Citation Format

Share Document