Reduced Suppression or Labile Memory? Mechanisms of Inefficient Filtering of Irrelevant Information in Older Adults

2006 ◽  
Vol 18 (4) ◽  
pp. 637-650 ◽  
Author(s):  
Monica Fabiani ◽  
Kathy A. Low ◽  
Emily Wee ◽  
Jeffrey J. Sable ◽  
Gabriele Gratton

Cognitive aging theories emphasize the decrease in efficiency of inhibitory processes and attention control in normal aging, which, in turn, may result in reduction of working memory function. Accordingly, some of these age-related changes may be due to faster sensory memory decay or to inefficient filtering of irrelevant sensory information (sensory gating). Here, event-related brain potentials and the event-related optical signal were recorded in younger and older adults passively listening to tone trains. To determine whether age differentially affects decay of sensory memory templates over short intervals, trains were separated by delays of either 1 or 5 sec. To determine whether age affects the suppression of responses to unattended repeated stimuli, we evaluated the brain activity elicited by successive train stimuli. Some trains started with a shorter-duration stimulus (deviant trains). Results showed that both electrical and optical responses to tones were more persistent with repeated stimulation in older adults than in younger adults, whereas the effects of delay were similar in the two groups. A mismatch negativity (MMN) was elicited by the first stimulus in deviant trains. This MMN was larger for 1- than 5-sec delay, but did not differ across groups. These data suggest that age-related changes in sensory processing are likely due to inefficient filtering of repeated information, rather than to faster sensory memory decay. This inefficient filtering may be due to, or interact with, reduced attention control. Furthermore, it may increase the noise levels in the information processing system and thus contribute to problems with working memory and speed of processing.

2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


Author(s):  
Daniel L. Schacter ◽  
Aleea L. Devitt ◽  
Donna Rose Addis

Episodic future thinking refers to the ability to imagine or simulate experiences that might occur in an individual’s personal future. It has been known for decades that cognitive aging is associated with declines in episodic memory, and recent research has documented correlated age-related declines in episodic future thinking. Previous research has considered both cognitive and neural mechanisms that are responsible for age-related changes in episodic future thinking, as well as effects of aging on the functions served by episodic future thinking. Studies concerned with mechanism indicate that multiple cognitive mechanisms contribute to changes in episodic future thinking during aging, including episodic memory retrieval, narrative style, and executive processes. Recent studies using an episodic specificity induction—brief training in recollecting episodic details of a recent experience—have proven useful in separating the contributions of episodic retrieval from other non-episodic processes during future thinking tasks in both old and young adults. Neuroimaging studies provide preliminary evidence of a role for age-related changes in default and executive brain networks in episodic future thinking and autobiographical planning. Studies concerned with function have examined age-related effects on the link between episodic future thinking and a variety of processes, including everyday problem-solving, prospective memory, prosocial intentions, and intertemporal choice/delay discounting. The general finding in these studies is for age-related reductions, consistent with the work on mechanisms that consistently reveals reduced episodic detail in older adults when they imagine future events. However, several studies have revealed that episodic simulation nonetheless confers some benefits for tasks tapping adaptive functions in older adults, such as problem-solving, prospective memory, and prosocial intentions, even though age-related deficits on these tasks are not eliminated or reduced by episodic future thinking.


2019 ◽  
Vol 34 (6) ◽  
pp. 1053-1053
Author(s):  
M Gonzalez Catalan ◽  
C Lindbergh ◽  
A Staffaroni ◽  
S Walters ◽  
K Casaletto ◽  
...  

Abstract Objective Cross-sectional studies have shown age-related differences in working memory (WM), but the trajectory is unclear due to the scarcity of longitudinal studies. Additional research is needed to better characterize the course of age-related changes in WM in older adults. The present study sought to address this gap in the literature by conducting serial assessments of WM in a longitudinally followed cohort of typically aging adults. We hypothesized a significant age × time interaction, such that WM would show pronounced declines with advancing age. Methods 640 functionally intact participants in an aging cohort (clinical dementia rating = 0; age range 52-99, mean age = 75) completed a computerized WM measure, Running Letter Memory (RLM), every ~15 months for up to 8.5 years (mean follow-up = 1.9 years). Longitudinal changes in RLM scores were analyzed using linear mixed effects models, allowing for random slopes and intercepts. All models were adjusted for sex and education. Results RLM performance did not significantly decline over time (b = -.14, p = .43). As hypothesized, there was a significant age × time interaction predicting RLM scores (b = -.08, p = .006). Specifically, RLM performance remained relatively stable (or slightly improved) until around age 75, beyond which increasingly precipitous declines were observed with advancing age. Conclusion The present results suggest that WM performance does not evidence declines until the mid-70s in typically aging adults, at which point increasingly steep decline trajectories are observed with advancing age. These findings highlight that cognitive aging does not occur at a constant rate in late life.


2021 ◽  
Author(s):  
Mariagrazia Capizzi ◽  
Antonino Visalli ◽  
Alessio Faralli ◽  
Giovanna Mioni

This study aimed to test two common explanations for the general finding of age-related changes in temporal processing. The first one is that older adults have a real difficulty in processing temporal information as compared to younger adults. The second one is that older adults perform poorly on timing tasks because of their reduced cognitive functioning. These explanations have been mostly contrasted in explicit timing tasks, where participants are overtly informed about the temporal nature of the task. Fewer studies have instead focused on age-related differences in implicit timing tasks, where no explicit instructions to process time are provided. Moreover, the comparison of both explicit and implicit timing in older adults has been restricted to healthy aging only. Here, a large sample (N= 85) of healthy and pathological older participants completed explicit (time bisection) and implicit (foreperiod) timing tasks. Participants’ age and general cognitive functioning, measured with the Mini-Mental State Examination (MMSE), were used as continuous variables to explain performance on explicit and implicit timing tasks. Results showed a clear dissociation between the effects of healthy cognitive aging and pathological cognitive decline on processing of explicit and implicit timing. Whereas age and cognitive decline similarly impaired the non-temporal cognitive processes (e.g., memory for and/or attention to durations) involved in explicit temporal judgements, processing of implicit timing survived normal age-related changes. These findings carry important theoretical and practical implications by providing the first experimental evidence that processing of implicit, but not explicit, timing is differentially affected in healthy and pathological aging.


Author(s):  
Gabriel K. Rousseau ◽  
Nina Lamson ◽  
Wendy A. Rogers

A variety of individual difference variables affect whether someone notices, encodes, comprehends, and complies with a product warning label. Failures at any of these stages reduce the effectiveness of warnings. Development of effective warnings must be based on understanding the characteristics of the product user. As the population grows older, consideration of age-related changes in perceptual and cognitive abilities becomes more relevant to the warning designer. Aging researchers have identified a variety of declines and changes in vision (e.g., acuity, contrast sensitivity, and color discrimination) and memory (e.g., working memory and prospective memory). By considering the abilities of the product user, the impact of age-related changes may be minimized. Based on cognitive aging research and theory, we will make recommendations about how designers can increase the effectiveness of warnings for older adults.


2015 ◽  
Vol 112 (24) ◽  
pp. 7593-7598 ◽  
Author(s):  
Douglas D. Garrett ◽  
Irene E. Nagel ◽  
Claudia Preuschhof ◽  
Agnieszka Z. Burzynska ◽  
Janina Marchner ◽  
...  

Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI–based blood oxygen level-dependent (BOLD) signal variability (SDBOLD) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SDBOLD levels in the presence of AMPH. Drug session order greatly moderated change–change relations between AMPH-driven SDBOLD and reaction time means (RTmean) and SDs (RTSD). Older adults who received AMPH in the first session tended to improve in RTmean and RTSD when SDBOLD was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SDBOLD decreased (for RTmean) or no effect at all (for RTSD). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Stephan Heinzel ◽  
Thomas G. Riemer ◽  
Stefanie Schulte ◽  
Johanna Onken ◽  
Andreas Heinz ◽  
...  

Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT) amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults.Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24–30 years) and 25 older (aged 60–75 years) healthy adults. Participants underwent adaptive training in then-back working memory task over 12 sessions under increasing difficulty conditions.Results. Both younger and older adults exhibited sizeable behavioral plasticity through training (P<.001), which was larger in younger as compared to older adults (P<.001). Age-related differences were qualified by an interaction with COMT genotype (P<.001), and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults.Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism.


2022 ◽  
Vol 13 ◽  
Author(s):  
Chiara F. Tagliabue ◽  
Greta Varesio ◽  
Veronica Mazza

Electroencephalography (EEG) studies investigating visuo-spatial working memory (vWM) in aging typically adopt an event-related potential (ERP) analysis approach that has shed light on the age-related changes during item retention and retrieval. However, this approach does not fully enable a detailed description of the time course of the neural dynamics related to aging. The most frequent age-related changes in brain activity have been described by two influential models of neurocognitive aging, the Hemispheric Asymmetry Reduction in Older Adults (HAROLD) and the Posterior-Anterior Shift in Aging (PASA). These models posit that older adults tend to recruit additional brain areas (bilateral as predicted by HAROLD and anterior as predicted by PASA) when performing several cognitive tasks. We tested younger (N = 36) and older adults (N = 35) in a typical vWM task (delayed match-to-sample) where participants have to retain items and then compare them to a sample. Through a data-driven whole scalp EEG analysis we aimed at characterizing the temporal dynamics of the age-related activations predicted by the two models, both across and within different stages of stimulus processing. Behaviorally, younger outperformed older adults. The EEG analysis showed that older adults engaged supplementary bilateral posterior and frontal sites when processing different levels of memory load, in line with both HAROLD and PASA-like activations. Interestingly, these age-related supplementary activations dynamically developed over time. Indeed, they varied across different stages of stimulus processing, with HAROLD-like modulations being mainly present during item retention, and PASA-like activity during both retention and retrieval. Overall, the present results suggest that age-related neural changes are not a phenomenon indiscriminately present throughout all levels of cognitive processing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Wen Koo ◽  
David L. Neumann ◽  
Tamara Ownsworth ◽  
David H. K. Shum

Prospective memory (PM) is the ability to perform a planned action at a future time. Older adults have shown moderate declines in PM, which are thought to be driven by age-related changes in the prefrontal cortex. However, an age-PM paradox is often reported, whereby deficits are evident in laboratory-based PM tasks, but not naturalistic PM tasks. The key aims of this study were to: (1) examine the age-PM paradox using the same sample across laboratory and ecological settings; and (2) determine whether self-reported PM and cognitive factors such as working memory and IQ are associated PM performance. Two PM tasks were administered (ecological vs. laboratory) to a sample of 23 community-dwelling older adults (Mage = 72.30, SDage = 5.62) and 28 young adults (Mage = 20.18, SDage = 3.30). Participants also completed measures of general cognitive function, working memory, IQ, and self-reported memory. Our results did not support the existence of the age-PM paradox. Strong age effects across both laboratory and ecological PM tasks were observed in which older adults consistently performed worse on the PM tasks than young adults. In addition, PM performance was significantly associated with self-reported PM measures in young adults. For older adults, IQ was associated with time-based PM. These findings suggest that the age-PM paradox is more complex than first thought and there are differential predictors of PM performance for younger and older adults.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 967-967
Author(s):  
Adam Turnbull ◽  
Giulia Poerio ◽  
Feng Lin ◽  
Jonathan Smallwood

Abstract Understanding how age-related changes in cognition manifest in the real world is an important goal for aging research. One means of capturing these changes involves “experience sampling” participant’s self-reported thoughts as they go about their daily lives. Previous research using this method has shown age-related changes in ongoing thought: e.g., older adults have fewer thoughts unrelated to the here-and-now. However, it is currently unclear how these changes reflect cognitive aging or lifestyle changes. 78 younger adults and 35 older adults rated their thought contents along 20 dimensions and the difficulty of their current activity in their daily lives. They also performed cognitive tasks in the laboratory. In a set of exploratory analyses using Principal Component Analysis (PCA), we found that older adults spent more time thinking positive, wanted thoughts, particularly in demanding contexts, suggesting they may use different strategies to regulate their emotions. In line with previous research, older adults spent less time mind wandering about their future selves. Past-related thought related to episodic memory differently in older and younger adults. Additionally, PCA analyses performed separately in older and younger adults showed high similarity to an analysis performed on the combined sample, suggesting a similar structure to ongoing daily life thought in older and younger adults. These findings inform the use of experience sampling to understand cognitive aging, highlighting the need to consider content along multiple dimensions as well as the context in which thoughts are reported when analyzing aging ongoing thought.


Sign in / Sign up

Export Citation Format

Share Document