The Down-dip Preferential Sequence Record of Orbital Cycles in Greenhouse Carbonate Ramps

Author(s):  
Beatriz Bádenas ◽  
Marcos Aurell
2021 ◽  
Vol 91 (10) ◽  
pp. 1040-1066
Author(s):  
Thomas C. Neal ◽  
Christian M. Appendini ◽  
Eugene C. Rankey

ABSTRACT Although carbonate ramps are ubiquitous in the geologic record, the impacts of oceanographic processes on their facies patterns are less well constrained than with other carbonate geomorphic forms such as isolated carbonate platforms. To better understand the role of physical and chemical oceanographic forces on geomorphic and sedimentologic variability of ramps, this study examines in-situ field measurements, remote-sensing data, and hydrodynamic modeling of the nearshore inner ramp of the modern northeastern Yucatán Shelf, Mexico. The results reveal how sediment production and accumulation are influenced by the complex interactions of the physical, chemical, and biological processes on the ramp. Upwelled, cool, nutrient-rich waters are transported westward across the ramp and concentrated along the shoreline by cold fronts (Nortes), westerly regional currents, and longshore currents. This influx supports a mix of both heterozoan and photozoan fauna and flora in the nearshore realm. Geomorphically, the nearshore parts of this ramp system in the study area include lagoon, barrier island, and shoreface environments, influenced by the mixed-energy (wave and tidal) setting. Persistent trade winds, episodic tropical depressions, and winter storms generate waves that propagate onto the shoreface. Extensive shore-parallel sand bodies (beach ridges and subaqueous dune fields) of the high-energy, wave-dominated upper shoreface and foreshore are composed of fine to coarse skeletal sand, lack mud, and include highly abraded, broken and bored grains. The large shallow lagoon is mixed-energy: wave-dominated near the inlet, it transitions to tide-dominated in the more protected central and eastern regions. Lagoon sediment consists of Halimeda-rich muddy gravel and sand. Hydrodynamic forces are especially strong where bathymetry focuses water flow, as occurs along a promontory and at the lagoon inlet, and can form subaqueous dunes. Explicit comparison among numerical models of conceptual shorefaces in which variables are altered and isolated systematically demonstrates the influences of the winds, waves, tides, and currents on hydrodynamics across a broad spectrum of settings (e.g., increased tidal range, differing wind and wave conditions). Results quantify how sediment transport patterns are determined by wave height and direction relative to the shoreface, but tidal forces locally control geomorphic and sedimentologic character. Similarly, the physical oceanographic processes acting throughout the year (e.g., daily tides, episodic winter Nortes, and persistent easterly winds and waves) have more impact on geomorphology and sedimentology of comparable nearshore systems than intense, but infrequent, hurricanes. Overall, this study provides perspectives on how upwelling, nutrient levels, and hydrodynamics influence the varied sedimentologic and geomorphic character of the nearshore areas of this high-energy carbonate ramp system. These results also provide for more accurate and realistic conceptual models of the depositional variability for a spectrum of modern and ancient ramp systems.


2019 ◽  
Vol 70 (4) ◽  
pp. 325-354 ◽  
Author(s):  
George Ajdanlijsky ◽  
André Strasser ◽  
Annette E. Götz

Abstract A cyclostratigraphic interpretation of peritidal to shallow-marine ramp deposits of the early Middle Triassic (Anisian) Opletnya Member exposed in outcrops along the Iskar River gorge, NW Bulgaria, is presented. Based on facies trends and bounding surfaces, depositional sequences of several orders can be identified. New biostratigraphic data provide a time frame of the studied succession with placement of the boundaries of the Anisian substages and show that the Aegean (early Anisian) substage lasted about 1.6 Myr. In the corresponding interval in the two studied sections, 80 elementary sequences are counted. Five elementary sequences compose a small-scale sequence. The prominent cyclic pattern of the Opletnya Member can thus be interpreted in terms of Milankovitch cyclicity: elementary sequences represent the precession (20-kyr) cycle and small-scale sequences the short eccentricity (100-kyr) cycle in the Milankovitch frequency band. Medium-scale sequences are defined based on lithology but only in two cases can be attributed to the long eccentricity cycle of 405 kyr. The transgressive-regressive facies trends within the sequences of all scales imply that they were controlled by sea-level changes, and that these were in tune with the climate changes induced by the orbital cycles. However, the complexity of facies and sedimentary structures seen in the Opletnya Member also implies that additional factors such as lateral migration of sediment bodies across the ramp were active. In addition, three major sequence boundaries have been identified in the studied sections, which can be correlated with the boundaries Ol4, An1, and An2 of the Tethyan realm.


2018 ◽  
Vol 69 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Andrej Čerňanský ◽  
Nicole Klein ◽  
Ján Soták ◽  
Mário Olšavský ◽  
Juraj Šurka ◽  
...  

AbstractAn eosauropterygian skeleton found in the Middle Triassic (upper Anisian) Gutenstein Formation of the Fatric Unit (Demänovská dolina Valley, Low Tatra Mountains, Slovakia) represents the earliest known occurrence of marine tetrapods in the Western Carpathians. The specimen represents a partly articulated portion of the postcranial skeleton (nine dorsal vertebrae, coracoid, ribs, gastral ribs, pelvic girdle, femur and one zeugopodial element). It is assigned to the Pachypleurosauria, more precisely to theSerpianosaurus–Neusticosaurusclade based on the following combination of features: (1) small body size; (2) morphology of vertebrae, ribs and femur; (3) tripartite gastral ribs; and (4) microanatomy of the femur as revealed by μCT. Members of this clade were described from the epicontinental Germanic Basin and the Alpine Triassic (now southern Germany, Switzerland, Italy), and possibly from Spain. This finding shows that pachypleurosaur reptiles attained a broader geographical distribution during the Middle Triassic, with their geographical range reaching to the Central Western Carpathians. Pachypleurosaurs are often found in sediments formed in shallow, hypersaline carbonate-platform environments. The specimen found here occurs in a succession with vermicular limestones in a shallow subtidal zone and stromatolitic limestones in a peritidal zone, indicating that pachypleurosaurs inhabited hypersaline, restricted carbonate ramps in the Western Carpathians.


Author(s):  
Edoardo Puglisi ◽  
Andrea Squartini ◽  
Fabio Terribile ◽  
Claudio Zaccone
Keyword(s):  

AAPG Bulletin ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1459-1474 ◽  
Author(s):  
Diego A. Kietzmann ◽  
Javier Martín-Chivelet ◽  
Ricardo M. Palma ◽  
José López-Gómez ◽  
Marina Lescano ◽  
...  

1996 ◽  
Vol 158 ◽  
pp. 13-14
Author(s):  
E. S. Dmitrienko

AbstractAn analysis of the main photometric properties of the nova-like variables AC Cnc, RW Tri and UX UMa, and Nova Her 1934 (DQ Her) is presented. The analysis is based on simultaneous high-speed UBVRI photometry, covering several dozens of orbital cycles evenly distributed over 14 years (1982 ... 1995) for DQ Her, and over 11 years (1985 ... 1995) for the other three stars. All data have been obtained with the 1.25 m telescope at the Crimean Astrophysical Observatory.


2004 ◽  
Vol 194 ◽  
pp. 18-20 ◽  
Author(s):  
J. Greiner ◽  
A. Iyudin ◽  
M. Jimenez-Garate ◽  
V. Burwitz ◽  
R. Schwarz ◽  
...  

AbstractThe eclipsing supersoft X-ray binary CAL 87 has been observed with Chandra on August 13/14, 2001 for nearly 100 ksec, covering two full orbital cycles and three eclipses. The shape of the eclipse light curve derived from the zeroth-order photons indicates that the size of the X-ray emission region is about 1.5 R⊙. The ACIS/LETG spectrum is completely dominated by emission lines without any noticeable continuum. The brightest emission lines are significantly redshifted and double-peaked, suggestive of emanating in a 2000 km/s wind. We model the X-ray spectrum by a mixture of recombination and resonant scattering. This allows us to deduce the temperature and luminosity of the ionizing source to be kT ~ 50 — 100 eV and Lx ~ 5 x 1037 erg/s.


2019 ◽  
Vol 159 (1) ◽  
pp. 10 ◽  
Author(s):  
Jonathan Horner ◽  
Pam Vervoort ◽  
Stephen R. Kane ◽  
Alma Y. Ceja ◽  
David Waltham ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document