Development of a real-time prediction model of driver behavior at intersections using kinematic time series data

2017 ◽  
Vol 106 ◽  
pp. 428-436 ◽  
Author(s):  
Yaoyuan V. Tan ◽  
Michael R. Elliott ◽  
Carol A.C. Flannagan
2020 ◽  
Vol 39 (3) ◽  
pp. 501-511
Author(s):  
Kaimeng Zhang ◽  
Chi Tim Ng ◽  
Myung Hwan Na

Author(s):  
Jae-Hyun Kim, Chang-Ho An

Due to the global economic downturn, the Korean economy continues to slump. Hereupon the Bank of Korea implemented a monetary policy of cutting the base rate to actively respond to the economic slowdown and low prices. Economists have been trying to predict and analyze interest rate hikes and cuts. Therefore, in this study, a prediction model was estimated and evaluated using vector autoregressive model with time series data of long- and short-term interest rates. The data used for this purpose were call rate (1 day), loan interest rate, and Treasury rate (3 years) between January 2002 and December 2019, which were extracted monthly from the Bank of Korea database and used as variables, and a vector autoregressive (VAR) model was used as a research model. The stationarity test of variables was confirmed by the ADF-unit root test. Bidirectional linear dependency relationship between variables was confirmed by the Granger causality test. For the model identification, AICC, SBC, and HQC statistics, which were the minimum information criteria, were used. The significance of the parameters was confirmed through t-tests, and the fitness of the estimated prediction model was confirmed by the significance test of the cross-correlation matrix and the multivariate Portmanteau test. As a result of predicting call rate, loan interest rate, and Treasury rate using the prediction model presented in this study, it is predicted that interest rates will continue to drop.


Author(s):  
Meenakshi Narayan ◽  
Ann Majewicz Fey

Abstract Sensor data predictions could significantly improve the accuracy and effectiveness of modern control systems; however, existing machine learning and advanced statistical techniques to forecast time series data require significant computational resources which is not ideal for real-time applications. In this paper, we propose a novel forecasting technique called Compact Form Dynamic Linearization Model-Free Prediction (CFDL-MFP) which is derived from the existing model-free adaptive control framework. This approach enables near real-time forecasts of seconds-worth of time-series data due to its basis as an optimal control problem. The performance of the CFDL-MFP algorithm was evaluated using four real datasets including: force sensor readings from surgical needle, ECG measurements for heart rate, and atmospheric temperature and Nile water level recordings. On average, the forecast accuracy of CFDL-MFP was 28% better than the benchmark Autoregressive Integrated Moving Average (ARIMA) algorithm. The maximum computation time of CFDL-MFP was 49.1ms which was 170 times faster than ARIMA. Forecasts were best for deterministic data patterns, such as the ECG data, with a minimum average root mean squared error of (0.2±0.2).


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Longhai Yang ◽  
Hong Xu ◽  
Xiqiao Zhang ◽  
Shuai Li ◽  
Wenchao Ji

The application and development of new technology make it possible to acquire real-time data of vehicles. Based on these real-time data, the behavior of vehicles can be analyzed. The prediction of vehicle behavior provides data support for the fine management of traffic. This paper proposes speed and acceleration have fractal features by R/S analysis of the time series data of speed and acceleration. Based on the characteristic analysis of microscopic parameters, the characteristic indexes of parameters are quantified, the fractal multistep prediction model of microparameters is established, and the BP (back propagation neural networks) model is established to estimate predictable step of fractal prediction model. The fractal multistep prediction model is used to predict speed acceleration in the predictable step. NGSIM trajectory data are used to test the multistep prediction model. The results show that the proposed fractal multistep prediction model can effectively realize the multistep prediction of vehicle speed.


2019 ◽  
Vol 34 (25) ◽  
pp. 1950201 ◽  
Author(s):  
Pritpal Singh ◽  
Gaurav Dhiman ◽  
Sen Guo ◽  
Ritika Maini ◽  
Harsimran Kaur ◽  
...  

The supremacy of quantum approach is able to provide the solutions which are not practically feasible on classical machines. This paper introduces a novel quantum model for time series data which depends on the appropriate length of intervals. In this study, the effects of these drawbacks are elaborately illustrated, and some significant measures to remove them are suggested, such as use of degree of membership along with mid-value of the interval. All these improvements signify the effective results in case of quantum time series, which are verified and validated with real-time datasets.


2014 ◽  
Vol 140 ◽  
pp. 704-716 ◽  
Author(s):  
J.-F. Pekel ◽  
C. Vancutsem ◽  
L. Bastin ◽  
M. Clerici ◽  
E. Vanbogaert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document