A hybrid fuzzy quantum time series and linear programming model: Special application on TAIEX index dataset

2019 ◽  
Vol 34 (25) ◽  
pp. 1950201 ◽  
Author(s):  
Pritpal Singh ◽  
Gaurav Dhiman ◽  
Sen Guo ◽  
Ritika Maini ◽  
Harsimran Kaur ◽  
...  

The supremacy of quantum approach is able to provide the solutions which are not practically feasible on classical machines. This paper introduces a novel quantum model for time series data which depends on the appropriate length of intervals. In this study, the effects of these drawbacks are elaborately illustrated, and some significant measures to remove them are suggested, such as use of degree of membership along with mid-value of the interval. All these improvements signify the effective results in case of quantum time series, which are verified and validated with real-time datasets.

2018 ◽  
Vol 33 (35) ◽  
pp. 1850208 ◽  
Author(s):  
Pritpal Singh ◽  
Gaurav Dhiman ◽  
Amandeep Kaur

The supremacy of quantum approach is able to solve the problems which are not practically feasible on classical machines. It suggests a significant speed up of the simulations and decreases the chance of error rates. This paper introduces a new quantum model for time series data which depends on the appropriate length of intervals. To provide effective solution of this problem, this study suggests a new graph-based quantum approach. This technique is useful in discretization and representation of logical relationships. Then, we divide these logical relations into various groups to obtain efficient results. The proposed model is verified and validated with various approaches. Experimental results signify that the proposed model is more precise than existing competing models.


Author(s):  
Meenakshi Narayan ◽  
Ann Majewicz Fey

Abstract Sensor data predictions could significantly improve the accuracy and effectiveness of modern control systems; however, existing machine learning and advanced statistical techniques to forecast time series data require significant computational resources which is not ideal for real-time applications. In this paper, we propose a novel forecasting technique called Compact Form Dynamic Linearization Model-Free Prediction (CFDL-MFP) which is derived from the existing model-free adaptive control framework. This approach enables near real-time forecasts of seconds-worth of time-series data due to its basis as an optimal control problem. The performance of the CFDL-MFP algorithm was evaluated using four real datasets including: force sensor readings from surgical needle, ECG measurements for heart rate, and atmospheric temperature and Nile water level recordings. On average, the forecast accuracy of CFDL-MFP was 28% better than the benchmark Autoregressive Integrated Moving Average (ARIMA) algorithm. The maximum computation time of CFDL-MFP was 49.1ms which was 170 times faster than ARIMA. Forecasts were best for deterministic data patterns, such as the ECG data, with a minimum average root mean squared error of (0.2±0.2).


2014 ◽  
Vol 140 ◽  
pp. 704-716 ◽  
Author(s):  
J.-F. Pekel ◽  
C. Vancutsem ◽  
L. Bastin ◽  
M. Clerici ◽  
E. Vanbogaert ◽  
...  

2021 ◽  
Vol 5 (6) ◽  
pp. 840-854
Author(s):  
Jesmeen M. Z. H. ◽  
J. Hossen ◽  
Azlan Bin Abd. Aziz

Recent years have seen significant growth in the adoption of smart home devices. It involves a Smart Home System for better visualisation and analysis with time series. However, there are a few challenges faced by the system developers, such as data quality or data anomaly issues. These anomalies can be due to technical or non-technical faults. It is essential to detect the non-technical fault as it might incur economic cost. In this study, the main objective is to overcome the challenge of training learning models in the case of an unlabelled dataset. Another important consideration is to train the model to be able to discriminate abnormal consumption from seasonal-based consumption. This paper proposes a system using unsupervised learning for Time-Series data in the smart home environment. Initially, the model collected data from the real-time scenario. Following seasonal-based features are generated from the time-domain, followed by feature reduction technique PCA to 2-dimension data. This data then passed through four known unsupervised learning models and was evaluated using the Excess Mass and Mass-Volume method. The results concluded that LOF tends to outperform in the case of detecting anomalies in electricity consumption. The proposed model was further evaluated by benchmark anomaly dataset, and it was also proved that the system could work with the different fields containing time-series data. The model will cluster data into anomalies and not. The developed anomaly detector will detect all anomalies as soon as possible, triggering real alarms in real-time for time-series data's energy consumption. It has the capability to adapt to changing values automatically. Doi: 10.28991/esj-2021-01314 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document