Identifying factors associated with roadside work zone collisions using machine learning techniques

2021 ◽  
Vol 158 ◽  
pp. 106203
Author(s):  
Amir A. Nasrollahzadeh ◽  
Ardalan R. Sofi ◽  
Bahram Ravani
2020 ◽  
Author(s):  
Mohammad Alarifi ◽  
Somaieh Goudarzvand3 ◽  
Abdulrahman Jabour ◽  
Doreen Foy ◽  
Maryam Zolnoori

BACKGROUND The rate of antidepressant prescriptions is globally increasing. A large portion of patients stop their medications which could lead to many side effects including relapse, and anxiety. OBJECTIVE The aim of this was to develop a drug-continuity prediction model and identify the factors associated with drug-continuity using online patient forums. METHODS We retrieved 982 antidepressant drug reviews from the online patient’s forum AskaPatient.com. We followed the Analytical Framework Method to extract structured data from unstructured data. Using the structured data, we examined the factors associated with antidepressant discontinuity and developed a predictive model using multiple machine learning techniques. RESULTS We tested multiple machine learning techniques which resulted in different performances ranging from accuracy of 65% to 82%. We found that Radom Forest algorithm provides the highest prediction method with 82% Accuracy, 78% Precision, 88.03% Recall, and 84.2% F1-Score. The factors associated with drug discontinuity the most were; withdrawal symptoms, effectiveness-ineffectiveness, perceived-distress-adverse drug reaction, rating, and perceived-distress related to withdrawal symptoms. CONCLUSIONS Although the nature of data available at online forums differ from data collected through surveys, we found that online patients forum can be a valuable source of data for drug-continuity prediction and understanding patients experience. The factors identified through our techniques were consistent with the findings of prior studies that used surveys.


2021 ◽  
Vol 12 ◽  
Author(s):  
Santu Rana ◽  
Wei Luo ◽  
Truyen Tran ◽  
Svetha Venkatesh ◽  
Paul Talman ◽  
...  

Aim: To use available electronic administrative records to identify data reliability, predict discharge destination, and identify risk factors associated with specific outcomes following hospital admission with stroke, compared to stroke specific clinical factors, using machine learning techniques.Method: The study included 2,531 patients having at least one admission with a confirmed diagnosis of stroke, collected from a regional hospital in Australia within 2009–2013. Using machine learning (penalized regression with Lasso) techniques, patients having their index admission between June 2009 and July 2012 were used to derive predictive models, and patients having their index admission between July 2012 and June 2013 were used for validation. Three different stroke types [intracerebral hemorrhage (ICH), ischemic stroke, transient ischemic attack (TIA)] were considered and five different comparison outcome settings were considered. Our electronic administrative record based predictive model was compared with a predictive model composed of “baseline” clinical features, more specific for stroke, such as age, gender, smoking habits, co-morbidities (high cholesterol, hypertension, atrial fibrillation, and ischemic heart disease), types of imaging done (CT scan, MRI, etc.), and occurrence of in-hospital pneumonia. Risk factors associated with likelihood of negative outcomes were identified.Results: The data was highly reliable at predicting discharge to rehabilitation and all other outcomes vs. death for ICH (AUC 0.85 and 0.825, respectively), all discharge outcomes except home vs. rehabilitation for ischemic stroke, and discharge home vs. others and home vs. rehabilitation for TIA (AUC 0.948 and 0.873, respectively). Electronic health record data appeared to provide improved prediction of outcomes over stroke specific clinical factors from the machine learning models. Common risk factors associated with a negative impact on expected outcomes appeared clinically intuitive, and included older age groups, prior ventilatory support, urinary incontinence, need for imaging, and need for allied health input.Conclusion: Electronic administrative records from this cohort produced reliable outcome prediction and identified clinically appropriate factors negatively impacting most outcome variables following hospital admission with stroke. This presents a means of future identification of modifiable factors associated with patient discharge destination. This may potentially aid in patient selection for certain interventions and aid in better patient and clinician education regarding expected discharge outcomes.


2019 ◽  
Vol 92 (4) ◽  
pp. 425-435 ◽  
Author(s):  
John Moore ◽  
Yue Lin

Abstract In addition to causing large-scale catastrophic damage to forests, wind can also cause damage to individual trees or small groups of trees. Over time, the cumulative effect of this wind-induced attrition can result in a significant reduction in yield in managed forests. Better understanding of the extent of these losses and the factors associated with them can aid better forest management. Information on wind damage attrition is often captured in long-term growth monitoring plots but analysing these large datasets to identify factors associated with the damage can be problematic. Machine learning techniques offer the potential to overcome some of the challenges with analysing these datasets. In this study, we applied two commonly-available machine learning algorithms (Random Forests and Gradient Boosting Trees) to a large, long-term dataset of tree growth for radiata pine (Pinus radiata D. Don) in New Zealand containing more than 157 000 observations. Both algorithms identified stand density and height-to-diameter ratio as being the two most important variables associated with the proportion of basal area lost to wind. The algorithms differed in their ease of parameterization and processing time as well as their overall ability to predict wind damage loss. The Random Forest model was able to predict ~43 per cent of the variation in the proportion of basal area lost to wind damage in the training dataset (a random sample of 80 per cent of the original data) and 45 per cent of the validation dataset (the remaining 20 per cent of the data). Conversely, the Gradient Boosting Tree model was able to predict more than 99 per cent of the variation in wind damage loss in the training dataset, but only ~49 per cent of the variation in the validation dataset, which highlights the potential for overfitting models to specific datasets. When applying these techniques to long-term datasets, it is also important to be aware of potential issues with the underlying data such as missing observations resulting from plots being abandoned without measurement when damage levels have been very high.


2021 ◽  
Author(s):  
Nicole M Zimmerman ◽  
David Ray ◽  
Nicole Princic ◽  
Meghan Moynihan ◽  
Callisia Clarke ◽  
...  

Aim: Machine learning reveals pathways to neuroendocrine tumor (NET) diagnosis. Patients & methods: Patients with NET and age-/gender-matched non-NET controls were retrospectively selected from MarketScan claims. Predictors (e.g., procedures, symptoms, conditions for which NET is misdiagnosed) were examined during a 5-year pre-period to understand presence of and time to NET diagnosis using conditional inference trees. Results: Among 3460 patients with NET, 70% had a prior misdiagnosis. 10,370 controls were included. Decision trees revealed combinations of factors associated with a high probability of being a patient with NET (e.g., abdominal pain, an endoscopic/biopsy procedure, vomiting) or longer times to diagnosis (e.g., asthma diagnosis with visits to >6 providers). Conclusion: Decision trees provided a unique examination of the journey to NET diagnosis.


2021 ◽  
Author(s):  
Radwan Qasrawi ◽  
Stephanny Vicuna Polo ◽  
Diala Abu Al-Halawah ◽  
Sameh Hallaq ◽  
Ziad Abdeen

BACKGROUND : Depression and anxiety symptoms in early childhood have a major effect on children's mental health growth and cognitive development. Studying the effect of mental health problems on cognitive development has gained researchers' attention for the last two decades OBJECTIVE In this paper, we seek to use machine learning techniques to predict the risk factors associated with school children's depression and anxiety METHODS The study data consisted of 5685 students in grades 5-9, aged 10-17 years, studying at public and refugee schools in the West Bank. The data were collected using the health behaviors school children questionnaire in the 2012-2013 academic year and analyzed using machine learning to predict the risk factors associated with student mental health symptoms. Five machine learning techniques (Random Forest, Neural Network, Decision Tree, Support Vector Machine, and Naïve Bayes) were used for the prediction. RESULTS The results indicated that the Random Forest model had the highest accuracy levels (72.6%, 68.5%) for depression and anxiety respectively. Thus, the Random Forest had the best performance in classifying and predicting the student's depression and anxiety. The results showed that school violence and bullying, home violence, academic performance, and family income were the most important factors affecting depression and anxiety scales CONCLUSIONS Overall, machine learning proved to be an efficient tool for identifying and predicting the associated factors that influence student depression and anxiety. The deployment of machine learning within the school information systems might facilitate the development of health prevention and intervention programs that will enhance students’ mental health and cognitive development.


2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 389-P
Author(s):  
SATORU KODAMA ◽  
MAYUKO H. YAMADA ◽  
YUTA YAGUCHI ◽  
MASARU KITAZAWA ◽  
MASANORI KANEKO ◽  
...  

Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Sign in / Sign up

Export Citation Format

Share Document