scholarly journals Safety improvements by intelligent connected vehicle technologies: A meta-analysis considering market penetration rates

2021 ◽  
Vol 159 ◽  
pp. 106234
Author(s):  
Guiming Xiao ◽  
Jaeyoung Lee ◽  
Qianshan Jiang ◽  
Helai Huang ◽  
Mohamed Abdel-Aty ◽  
...  
2020 ◽  
Vol 136 ◽  
pp. 105299 ◽  
Author(s):  
Ling Wang ◽  
Hao Zhong ◽  
Wanjing Ma ◽  
Mohamed Abdel-Aty ◽  
Juneyoung Park

Author(s):  
Gaby Joe Hannoun ◽  
Pamela Murray-Tuite ◽  
Kevin Heaslip ◽  
Thidapat Chantem

This paper introduces a semi-automated system that facilitates emergency response vehicle (ERV) movement through a transportation link by providing instructions to downstream non-ERVs. The proposed system adapts to information from non-ERVs that are nearby and downstream of the ERV. As the ERV passes stopped non-ERVs, new non-ERVs are considered. The proposed system sequentially executes integer linear programs (ILPs) on transportation link segments with information transferred between optimizations to ensure ERV movement continuity. This paper extends a previously developed mathematical program that was limited to a single short segment. The new approach limits runtime overhead without sacrificing effectiveness and is more suitable to dynamic systems. It also accommodates partial market penetration of connected vehicles using a heuristic reservation approach, making the proposed system beneficial in the short-term future. The proposed system can also assign the ERV to a specific lateral position at the end of the link, a useful capability when next entering an intersection. Experiments were conducted to develop recommendations to reduce computation times without compromising efficiency. When compared with the current practice of moving to the nearest edge, the system reduces ERV travel time an average of 3.26 s per 0.1 mi and decreases vehicle interactions.


Author(s):  
Xiaoyu Guo ◽  
Yongxin Peng ◽  
Sruthi Ashraf ◽  
Mark W. Burris

Connected vehicle (CV) technology can connect, communicate, and share information between vehicles, infrastructure, and other traffic management systems. Recent research has examined and promoted CV and connected automated vehicle (CAV) technology on managed lane systems to increase capacity and reduce congestion, as managed lane systems could be equipped with advanced infrastructure relatively quickly. However, the effect on travel considering, information-based managed lane choice decisions in a CV environment is not clear. Therefore, this research analyzed the potential effects on a managed lane system with connected vehicles considering several travel behavior elements, including drivers’ willingness to reroute and their choice of managed lanes based on individual travel time savings. This study analyzed the potential effects on a managed lane system by assigning different market penetration rates (0%, 10%, 50%, 100%) of CVs and informing CV drivers about travel time savings for a 10-mi stretch at 5-min intervals. How the traffic performance measurements (i.e., throughput, travel time saving, average speed and average travel time) vary under different market penetration rates of CVs is then investigated. Two major conclusions are reached: (i) although information exchange was assumed to be instantaneous between vehicles and the system, there existed a response time (or time delay) in the macroscopic traffic reflection; (ii) managed lane use may decrease, when travel time information becomes available, since drivers perceive they are saving more travel time than they actually do save.


Author(s):  
Hyeon-Shic Shin ◽  
Michael Callow ◽  
Seyedehsan Dadvar ◽  
Young-Jae Lee ◽  
Z. Andrew Farkas

The preferences of drivers and their willingness to pay (WTP) for connected vehicle (CV) technologies were estimated with the use of adaptive choice-based conjoint (ACBC) analysis, the newest such method available. More than 500 usable surveys were collected through an online survey. Respondents were asked to choose from variously priced CV technology bundles (e.g., collision prevention, roadway information system). The study found that the acceptance level of the CV technologies was high, given that an absolute majority of survey respondents had the highest preferences for the most comprehensive technology bundle in each attribute. However, a comparison of the average importance of each attribute, including bundle prices, implied that price would be an important constraint and would influence CV deployment rates. At the attribute level, collision prevention technology received the highest importance score (i.e., the safety benefits most appealed to drivers). The ACBC analysis seemed to mimic well the trade-offs that people would consider in their actual purchasing decisions. The difference between WTP and self-explicated prices obtained before preferences were estimated was statistically significant (i.e., participants chose bundles after they considered product attributes and prices). This finding also affirmed that the ACBC analysis was a more appropriate method than the direct questioning methods used in past studies. Finally, certain socioeconomic characteristics were positively related to WTP. Those respondents that were knowledgeable about CV technologies and showed more innovativeness had higher WTP as well.


Author(s):  
Christopher M. Day ◽  
Howell Li ◽  
Lucy M. Richardson ◽  
James Howard ◽  
Tom Platte ◽  
...  

Signal offset optimization recently has been shown to be feasible with vehicle trajectory data at low levels of market penetration. Offset optimization was performed on two corridors with that type of data. A proposed procedure called “virtual detection” was used to process 6 weeks of trajectory splines and create vehicle arrival profiles for two corridors, comprising 25 signalized intersections. After data were processed and filtered, penetration rates between 0.09% and 0.80% were observed, with variations by approach. Then those arrival profiles were compared statistically with those measured with physical detectors, and most approaches showed statistically significant goodness of fit at a 90% confidence level. Finally, the arrival profiles created with virtual detection were used to optimize offsets and compared with a solution derived from arrival profiles obtained with physical detectors. Results demonstrate that virtual detection can produce good-quality offsets with current market penetration rates of probe data. In addition, a sensitivity analysis of the sampling period indicated that 2 weeks may be sufficient for data collection at current penetration rates.


2018 ◽  
Vol 52 (6) ◽  
pp. 1299-1326 ◽  
Author(s):  
Hyoshin (John) Park ◽  
Ali Haghani ◽  
Song Gao ◽  
Michael A. Knodler ◽  
Siby Samuel

Author(s):  
Yun Zhou ◽  
Raj Bridgelall

GPS loggers and cameras aboard connected vehicles can produce vast amounts of data. Analysts can mine such data to decipher patterns in vehicle trajectories and driver–vehicle interactions. Ability to process such large-scale data in real time can inform strategies to reduce crashes, improve traffic flow, enhance system operational efficiencies, and reduce environmental impacts. However, connected vehicle technologies are in the very early phases of deployment. Therefore, related datasets are extremely scarce, and the utility of such emerging datasets is largely unknown. This paper provides a comprehensive review of studies that used large-scale connected vehicle data from the United States Department of Transportation Connected Vehicle Safety Pilot Model Deployment program. It is the first and only such dataset available to the public. The data contains real-world information about the operation of connected vehicles that organizations are testing. The paper provides a summary of the available datasets and their organization, and the overall structure and other characteristics of the data captured during pilot deployments. Usage of the data is then classified into three categories: driving pattern identification, development of surrogate safety measures, and improvements in the operation of signalized intersections. Finally, some limitations experienced with the existing datasets are identified.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Pangwei Wang ◽  
Yunfeng Wang ◽  
Hui Deng ◽  
Mingfang Zhang ◽  
Juan Zhang

It is agreed that connected vehicle technologies have broad implications to traffic management systems. In order to alleviate urban congestion and improve road capacity, this paper proposes a multilane spatiotemporal trajectory optimization method (MSTTOM) to reach full potential of connected vehicles by considering vehicular safety, traffic capacity, fuel efficiency, and driver comfort. In this MSTTOM, the dynamic characteristics of connected vehicles, the vehicular state vector, the optimized objective function, and the constraints are formulated. The method for solving the trajectory problem is optimized based on Pontryagin’s maximum principle and reinforcement learning (RL). A typical scenario of intersection with a one-way 4-lane section is measured, and the data within 24 hours are collected for tests. The results demonstrate that the proposed method can optimize the traffic flow by enhancing vehicle fuel efficiency by 32% and reducing pollutants emissions by 17% compared with the advanced glidepath prototype application (GPPA) scheme.


Sign in / Sign up

Export Citation Format

Share Document