scholarly journals Skeletal muscle mitoflashes, pH, and the role of uncoupling protein-3

2019 ◽  
Vol 663 ◽  
pp. 239-248 ◽  
Author(s):  
S. McBride ◽  
L. Wei-LaPierre ◽  
F. McMurray ◽  
M. MacFarlane ◽  
X. Qiu ◽  
...  
2004 ◽  
Vol 97 (3) ◽  
pp. 976-983 ◽  
Author(s):  
Vladimir Ljubicic ◽  
Peter J. Adhihetty ◽  
David A. Hood

In an effort to better characterize uncoupling protein-3 (UCP3) function in skeletal muscle, we assessed basal UCP3 protein content in rat intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondrial subfractions in conjunction with measurements of state 4 respiration. UCP3 content was 1.3-fold ( P < 0.05) greater in IMF compared with SS mitochondria. State 4 respiration was 2.6-fold greater ( P < 0.05) in the IMF subfraction than in SS mitochondria. GDP attenuated state 4 respiration by ∼40% ( P < 0.05) in both subfractions. The UCP3 activator oleic acid (OA) significantly increased state 4 respiration in IMF mitochondria only. We used chronic electrical stimulation (3 h/day for 7 days) to investigate the relationship between changes in UCP3 protein expression and alterations in state 4 respiration during contractile activity-induced mitochondrial biogenesis. UCP3 content was increased by 1.9- and 2.3-fold in IMF and SS mitochondria, respectively, which exceeded the concurrent 40% ( P < 0.05) increase in cytochrome- c oxidase activity. Chronic contractile activity increased state 4 respiration by 1.4-fold ( P < 0.05) in IMF mitochondria, but no effect was observed in the SS subfraction. The uncoupling function of UCP3 accounted for 50–57% of the OA-induced increase in state 4 respiration in IMF mitochondria, which was independent of the induced twofold difference in UCP3 content due to chronic contractile activity. Thus modifications in UCP3 function are more important than changes in UCP3 expression in modifying state 4 respiration. This effect is evident in IMF but not SS mitochondria. We conclude that UCP3 at physiological concentrations accounts for a significant portion of state 4 respiration in both IMF and SS mitochondria, with the contribution being greater in the IMF subfraction. In addition, the contradiction between human and rat training studies with respect to UCP3 protein expression may partly be explained by the greater than twofold difference in mitochondrial UCP3 content between rat and human skeletal muscle.


2006 ◽  
Vol 60 (5) ◽  
pp. 569-575 ◽  
Author(s):  
Petr Brauner ◽  
Pavel Kopecky ◽  
Pavel Flachs ◽  
Ondrej Kuda ◽  
Jaroslav Vorlicek ◽  
...  

2007 ◽  
Vol 117 (7) ◽  
pp. 1995-2003 ◽  
Author(s):  
Cheol Soo Choi ◽  
Jonathan J. Fillmore ◽  
Jason K. Kim ◽  
Zhen-Xiang Liu ◽  
Sheene Kim ◽  
...  

2001 ◽  
Vol 361 (1) ◽  
pp. 49-56 ◽  
Author(s):  
James A. HARPER ◽  
Jeff A. STUART ◽  
Mika B. JEKABSONS ◽  
Damien ROUSSEL ◽  
Kevin M. BRINDLE ◽  
...  

Western blots detected uncoupling protein 3 (UCP3) in skeletal-muscle mitochondria from wild-type but not UCP3 knock-out mice. Calibration with purified recombinant UCP3 showed that mouse and rat skeletal muscle contained 0.14μg of UCP3/mg of mitochondrial protein. This very low UCP3 content is 200–700-fold less than the concentration of UCP1 in brown-adipose-tissue mitochondria from warm-adapted hamster (24–84μg of UCP1/mg of mitochondrial protein). UCP3 was present in brown-adipose-tissue mitochondria from warm-adapted rats but was undetectable in rat heart mitochondria. We expressed human UCP3 in yeast mitochondria at levels similar to, double and 7-fold those found in rodent skeletal-muscle mitochondria. Yeast mitochondria containing UCP3 were more uncoupled than empty-vector controls, particularly at concentrations that were 7-fold physiological. However, uncoupling by UCP3 was not stimulated by the known activators palmitate and superoxide; neither were they inhibited by GDP, suggesting that the observed uncoupling was a property of non-native protein. As a control, UCP1 was expressed in yeast mitochondria at similar concentrations to that of UCP3 and at up to 50% of the physiological level of UCP1. Low levels of UCP1 gave palmitate-dependent and GDP-sensitive proton conductance but higher levels of UCP1 caused an additional GDP-insensitive uncoupling artifact. We conclude that the uncoupling of yeast mitochondria by high levels of UCP3 expression is entirely an artifact and provides no evidence for any native uncoupling activity of the protein.


2004 ◽  
Vol 82 (12) ◽  
pp. 3493-3499 ◽  
Author(s):  
M. Katsumata ◽  
M. Matsumoto ◽  
S. Kawakami ◽  
Y. Kaji

2003 ◽  
Vol 22 (1) ◽  
pp. 88-93 ◽  
Author(s):  
H.R. Gosker ◽  
P. Schrauwen ◽  
M.K.C. Hesselink ◽  
G. Schaart ◽  
G.J. van der Vusse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document