Ready-to-use 3D-printed electrochemical cell for in situ voltammetry of immobilized microparticles and Raman spectroscopy

2021 ◽  
Vol 1141 ◽  
pp. 57-62
Author(s):  
Géssica Domingos da Silveira ◽  
Reverson Fernandes Quero ◽  
Lucas Paines Bressan ◽  
Juliano Alves Bonacin ◽  
Dosil Pereira de Jesus ◽  
...  
2020 ◽  
Vol 20 (10) ◽  
pp. 6604-6609
Author(s):  
Shanshan Liu ◽  
Guochun Zhang ◽  
Kai Feng ◽  
Yanyang Han ◽  
Tao He ◽  
...  

ACS Nano ◽  
2021 ◽  
Author(s):  
Minmin Hu ◽  
Zhaojin Li ◽  
Tao Hu ◽  
Shihao Zhu ◽  
Chao Zhang ◽  
...  

Carbon ◽  
2021 ◽  
Vol 177 ◽  
pp. 428
Author(s):  
Xiaoqin Cheng ◽  
Huijun Li ◽  
Zhenxin Zhao ◽  
Yong-zhen Wang ◽  
Xiaomin Wang

Author(s):  
Wendy Rusli ◽  
Pavan Kumar Naraharisetti ◽  
Wee Chew

The use of Raman spectroscopy for reaction monitoring has been successfully applied over the past few decades. One complication in such usage is the applicability for quantitative reaction studies. This...


1991 ◽  
Vol 62 (7) ◽  
pp. 1743-1745 ◽  
Author(s):  
F. Spinella ◽  
G. A. Baratta ◽  
G. Strazzulla

Langmuir ◽  
2021 ◽  
Vol 37 (4) ◽  
pp. 1365-1371
Author(s):  
Sergei V. German ◽  
Gleb S. Budylin ◽  
Evgeny A. Shirshin ◽  
Dmitry A. Gorin

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinchen Du ◽  
Le Wu ◽  
Hongyu Yan ◽  
Zhuyan Jiang ◽  
Shilin Li ◽  
...  

AbstractDeveloping an anti-infective shape-memory hemostatic sponge able to guide in situ tissue regeneration for noncompressible hemorrhages in civilian and battlefield settings remains a challenge. Here we engineer hemostatic chitosan sponges with highly interconnective microchannels by combining 3D printed microfiber leaching, freeze-drying, and superficial active modification. We demonstrate that the microchannelled alkylated chitosan sponge (MACS) exhibits the capacity for water and blood absorption, as well as rapid shape recovery. We show that compared to clinically used gauze, gelatin sponge, CELOX™, and CELOX™-gauze, the MACS provides higher pro-coagulant and hemostatic capacities in lethally normal and heparinized rat and pig liver perforation wound models. We demonstrate its anti-infective activity against S. aureus and E. coli and its promotion of liver parenchymal cell infiltration, vascularization, and tissue integration in a rat liver defect model. Overall, the MACS demonstrates promising clinical translational potential in treating lethal noncompressible hemorrhage and facilitating wound healing.


Sign in / Sign up

Export Citation Format

Share Document