Controllable growth of flower-like hierarchical CoNiO2 nanoflakes anchored on Nitinol fiber substrate with good selectivity for highly efficient solid-phase microextraction of polycyclic aromatic hydrocarbons in water

2021 ◽  
pp. 339371
Author(s):  
Feifei Wang ◽  
Junliang Du ◽  
Hua Zhou ◽  
Na Chang ◽  
Jingyi Kang ◽  
...  
Food Control ◽  
2021 ◽  
pp. 108104
Author(s):  
Rosimeire Resende dos Santos ◽  
Ricardo Mathias Orlando ◽  
Zenilda de Lourdes Cardeal ◽  
Helvécio Costa Menezes

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1869 ◽  
Author(s):  
Stefano Dugheri ◽  
Alessandro Bonari ◽  
Matteo Gentili ◽  
Giovanni Cappelli ◽  
Ilenia Pompilio ◽  
...  

High-throughput screening of samples is the strategy of choice to detect occupational exposure biomarkers, yet it requires a user-friendly apparatus that gives relatively prompt results while ensuring high degrees of selectivity, precision, accuracy and automation, particularly in the preparation process. Miniaturization has attracted much attention in analytical chemistry and has driven solvent and sample savings as easier automation, the latter thanks to the introduction on the market of the three axis autosampler. In light of the above, this contribution describes a novel user-friendly solid-phase microextraction (SPME) off- and on-line platform coupled with gas chromatography and triple quadrupole-mass spectrometry to determine urinary metabolites of polycyclic aromatic hydrocarbons 1- and 2-hydroxy-naphthalene, 9-hydroxy-phenanthrene, 1-hydroxy-pyrene, 3- and 9-hydroxy-benzoantracene, and 3-hydroxy-benzo[a]pyrene. In this new procedure, chromatography’s sensitivity is combined with the user-friendliness of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide on-fiber SPME derivatization using direct immersion sampling; moreover, specific isotope-labelled internal standards provide quantitative accuracy. The detection limits for the seven OH-PAHs ranged from 0.25 to 4.52 ng/L. Intra-(from 2.5 to 3.0%) and inter-session (from 2.4 to 3.9%) repeatability was also evaluated. This method serves to identify suitable risk-control strategies for occupational hygiene conservation programs.


Sign in / Sign up

Export Citation Format

Share Document