thin membranes
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 47)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 131 (1) ◽  
pp. 019901
Author(s):  
Ali Sarafraz ◽  
Hadi Arjmandi-Tash ◽  
Laura Dijkink ◽  
Banafsheh Sajadi ◽  
Mohsen Moeini ◽  
...  

2022 ◽  
Author(s):  
Andrew Allen ◽  
Annan Mashin ◽  
Kawai Kwok
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Keqiang Li ◽  
Yajuan Cheng ◽  
Maofeng Dou ◽  
Wang Zeng ◽  
Sebastian Volz ◽  
...  

Understanding the thermal transport in nanostructures has important applications in fields such as thermoelectric energy conversion, novel computing and heat dissipation. Using non-homogeneous equilibrium molecular dynamic simulations, we studied the thermal transport in pristine and resonant Si membranes bounded with {110} facets. The break of symmetry by surfaces led to the anisotropic thermal transport with the thermal conductivity along the [110]-direction to be 1.78 times larger than that along the [100]-direction in the pristine structure. In the pristine membranes, the mean free path of phonons along both the [100]- and [110]-directions could reach up to ∼100 µm. Such modes with ultra-long MFP could be effectively hindered by surface resonant pillars. As a result, the thermal conductivity was significantly reduced in resonant structures, with 87.0% and 80.8% reductions along the [110]- and [100]-directions, respectively. The thermal transport anisotropy was also reduced, with the ratio κ110/κ100 decreasing to 1.23. For both the pristine and resonant membranes, the thermal transport was mainly conducted by the in-plane modes. The current work could provide further insights in understanding the thermal transport in thin membranes and resonant structures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Kyu Park ◽  
Yue Zhang ◽  
Baoxing Xu ◽  
Seok Kim

AbstractDirect transfer of pre-patterned device-grade nano-to-microscale materials highly benefits many existing and potential, high performance, heterogeneously integrated functional systems over conventional lithography-based microfabrication. We present, in combined theory and experiment, a self-delamination-driven pattern transfer of a single crystalline silicon thin membrane via well-controlled interfacial design in liquid media. This pattern transfer allows the usage of an intermediate or mediator substrate where both front and back sides of a thin membrane are capable of being integrated with standard lithographical processing, thereby achieving deterministic assembly of the thin membrane into a multi-functional system. Implementations of these capabilities are demonstrated in broad variety of applications ranging from electronics to microelectromechanical systems, wetting and filtration, and metamaterials.


2021 ◽  
Author(s):  
Harpreet Atwal ◽  
Anika Wong ◽  
Michael Boutilier

Abstract Continuum transport equations are commonly applied to nanopores in atomically thin membranes for simple modeling. Although these equations do not apply for nanopores approaching the fluid or solute molecule size, they can be reasonably accurate for larger nanopores. Relatively large graphene nanopores have applications in small particle filtration and appear as unwanted defects in large-area membranes. Solute transport rates through these nanopores determine the rejection performance of the membrane. Atomically thin membranes commonly operate in a regime where advection and diffusion both contribute appreciably to transport. Solute mass transfer rates through larger nanopores have previously been modeled by adding continuum estimates for pure diffusion and pure advection through an infinitesimally thick orifice plate, as if the separate contributions were independent. We show here that estimating the transport rate in this way is accurate to within 30%. We further derive an expression for the net mass transfer rate in advection-diffusion through an infinitesimal thickness orifice plate at low Reynolds numbers that is accurate to within 1% for positive Peclet numbers (where diffusion is in the same direction as advection) and applies for negative Peclet numbers as well. Based on our expression, we devise an equation for the net mass transfer rate in creeping flow through orifice plates of arbitrary thickness that matches finite volume calculations to within 3% for positive Peclet numbers. These simple but accurate analytical equations for mass transfer rates in creeping flow through an orifice plate are useful tools in constructing approximate transport models.


2021 ◽  
Vol 130 (18) ◽  
pp. 184302
Author(s):  
Ali Sarafraz ◽  
Hadi Arjmandi-Tash ◽  
Laura Dijkink ◽  
Banafsheh Sajadi ◽  
Mohsen Moeini ◽  
...  

2021 ◽  
Vol 922 (1) ◽  
pp. 39
Author(s):  
W. Garrett Levine ◽  
Samuel H. C. Cabot ◽  
Darryl Seligman ◽  
Gregory Laughlin

Abstract At present, there exists no consensus in the astronomical community regarding either the bulk composition or the formation mechanism for the interstellar object 1I/2017 U1 (‘Oumuamua). With the goal of assessing the merits of the various scenarios that have been suggested to explain ‘Oumuamua's appearance and observed properties, we report a number of new analyses and provide an up-to-date review of the current hypotheses. We consider the interpretations that can reconcile ‘Oumuamua's observed non-Keplerian trajectory with the nondetection of traditional cometary volatiles. We examine the ability of these proposed formation pathways to populate the galaxy with sufficient interstellar objects such that the detection of ‘Oumuamua by Pan-STARRS would be statistically favored. We consider two exotic ices, hydrogen and nitrogen, showing that the frigid temperature requirement for the former and the necessary formation efficiency of the latter pose serious difficulties for these interpretations. Via order-of-magnitude arguments and hydrodynamical cratering simulations, we show that impacts on extrasolar Kuiper Belt analogues are not expected to generate N2 ice fragments as large as ‘Oumuamua. In addition, we discuss observational tests to confirm the presence of these ices in future interstellar objects. Next, we examine the explanations that attribute ‘Oumuamua's properties to other compositions: ultraporous dust aggregates and thin membranes powered by solar radiation pressure, among others. While none of these hypotheses are perfectly satisfactory, we make predictions that will be testable by the Vera Rubin Observatory to resolve the tension introduced by ‘Oumuamua.


Sign in / Sign up

Export Citation Format

Share Document