scholarly journals Solar power generation forecasting using ensemble approach based on deep learning and statistical methods

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mariam AlKandari ◽  
Imtiaz Ahmad

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate conditions, which fluctuate over time. In this research, we propose a hybrid model that combines machine-learning methods with Theta statistical method for more accurate prediction of future solar power generation from renewable energy plants. The machine learning models include long short-term memory (LSTM), gate recurrent unit (GRU), AutoEncoder LSTM (Auto-LSTM) and a newly proposed Auto-GRU. To enhance the accuracy of the proposed Machine learning and Statistical Hybrid Model (MLSHM), we employ two diversity techniques, i.e. structural diversity and data diversity. To combine the prediction of the ensemble members in the proposed MLSHM, we exploit four combining methods: simple averaging approach, weighted averaging using linear approach and using non-linear approach, and combination through variance using inverse approach. The proposed MLSHM scheme was validated on two real-time series datasets, that sre Shagaya in Kuwait and Cocoa in the USA. The experiments show that the proposed MLSHM, using all the combination methods, achieved higher accuracy compared to the prediction of the traditional individual models. Results demonstrate that a hybrid model combining machine-learning methods with statistical method outperformed a hybrid model that only combines machine-learning models without statistical method.

2021 ◽  
Vol 309 ◽  
pp. 01163
Author(s):  
K. Anuradha ◽  
Deekshitha Erlapally ◽  
G. Karuna ◽  
V. Srilakshmi ◽  
K. Adilakshmi

Solar power is generated using photovoltaic (PV) systems all over the world. Because the output power of PV systems is alternating and highly dependent on environmental circumstances, solar power sources are unpredictable in nature. Irradiance, humidity, PV surface temperature, and wind speed are only a few of these variables. Because of the unpredictability in photovoltaic generating, it’s crucial to plan ahead for solar power generation as in solar power forecasting is required for electric grid. Solar power generation is weather-dependent and unpredictable, this forecast is complex and difficult. The impacts of various environmental conditions on the output of a PV system are discussed. Machine Learning (ML) algorithms have shown great results in time series forecasting and so can be used to anticipate power with weather conditions as model inputs. The use of multiple machine learning, Deep learning and artificial neural network techniques to perform solar power forecasting. Here in this regression models from machine learning techniques like support vector machine regressor, random forest regressor and linear regression model from which random forest regressor beaten the other two regression models with vast accuracy.


2021 ◽  
Vol 5 (1) ◽  
pp. 50
Author(s):  
Phil Aupke ◽  
Andreas Kassler ◽  
Andreas Theocharis ◽  
Magnus Nilsson ◽  
Michael Uelschen

Recently, there has been growing interest in using machine learning based methods for forecasting renewable energy generation using time-series prediction. Such forecasting is important in order to optimize energy management systems in future micro-grids that will integrate a large amount of solar power generation. However, predicting solar power generation is difficult due to the uncertainty of the solar irradiance and weather phenomena. In this paper, we quantify the impact of uncertainty of machine learning based time-series predictors on the forecast accuracy of renewable energy generation using long-term time series data available from a real micro-grid in Sweden. We use clustering to build different ML forecasting models using LSTM and Facebook Prophet. We evaluate the accuracy impact of using interpolated weather and radiance information on both clustered and non-clustered models. Our evaluations show that clustering decreases the uncertainty by more than 50%. When using actual on-side weather information for the model training and interpolated data for the inference, the improvements in accuracy due to clustering are the highest, which makes our approach an interesting candidate for usage in real micro-grids.


2019 ◽  
Vol 11 (5) ◽  
pp. 1501 ◽  
Author(s):  
Seul-Gi Kim ◽  
Jae-Yoon Jung ◽  
Min Sim

Photovoltaic systems have become an important source of renewable energy generation. Because solar power generation is intrinsically highly dependent on weather fluctuations, predicting power generation using weather information has several economic benefits, including reliable operation planning and proactive power trading. This study builds a model that predicts the amounts of solar power generation using weather information provided by weather agencies. This study proposes a two-step modeling process that connects unannounced weather variables with announced weather forecasts. The empirical results show that this approach improves a base approach by wide margins, regardless of types of applied machine learning algorithms. The results also show that the random forest regression algorithm performs the best for this problem, achieving an R-squared value of 70.5% in the test data. The intermediate modeling process creates four variables, which are ranked with high importance in the post-analysis. The constructed model performs realistic one-day ahead predictions.


Sign in / Sign up

Export Citation Format

Share Document