A composite control scheme for 6DOF spacecraft formation control

2011 ◽  
Vol 69 (7-8) ◽  
pp. 595-611 ◽  
Author(s):  
Haibin Sun ◽  
Shihua Li ◽  
Shumin Fei
2014 ◽  
Vol 621 ◽  
pp. 209-214
Author(s):  
Hong Bo Liao ◽  
Shi Xun Fan ◽  
Mo Hei ◽  
Da Peng Fan

A composite control scheme is proposed to solve the problems of friction toque and carrier disturbance lag in the stabilized loop of inertial stabilized platform. Based on analysis of composite control structure, the performance of single rate loop, double rate loop and composite control in the inhibition of carrier disturbance, friction torque and sensor noise are compared. In order to further verify the composite control method, an experimental setup is built. The experimental results show that: when the disturbance is 1deg-1Hz sinusoidal signal, the peak value of residual error of the single rate loop is 0.055 deg, the double rate loop is 0.031deg, and the composite control is the 0.0188deg, so the performance of isolation carrier disturbance of platform is effectively improved.


2018 ◽  
Vol 90 (1) ◽  
pp. 166-174
Author(s):  
Baolin Wu ◽  
Xibin Cao

Purpose This paper aims to address the problem of formation control for spacecraft formation in elliptic orbits by using local relative measurements. Design/methodology/approach A decentralized formation control law is proposed to solve the aforementioned problem. The control law for each spacecraft uses only its relative state with respect to the neighboring spacecraft it can sense. These relative states can be acquired by local relative measurements. The formation control problem is converted to n stabilization problems of a single spacecraft by using algebraic graph theories. The resulting relative motion model is described by a linear time-varying system with uncertain parameters. An optimal guaranteed cost control scheme is subsequently used to obtain the desired control performance. Findings Numerical simulations show the effectiveness of the proposed formation control law. Practical implications The proposed control law can be considered as an alternative to global positioning system-based relative navigation and control system for formation flying missions. Originality/value The proposed decentralized formation control architecture needs only local relative measurements. Fuel consumption is considered by using an optimal guaranteed cost control scheme.


2022 ◽  
Vol 6 (1) ◽  
pp. 47
Author(s):  
Weijia Zheng ◽  
Runquan Huang ◽  
Ying Luo ◽  
YangQuan Chen ◽  
Xiaohong Wang ◽  
...  

Considering the performance requirements in actual applications, a look-up table based fractional order composite control scheme for the permanent magnet synchronous motor speed servo system is proposed. Firstly, an extended state observer based compensation scheme was adopted to suppress the motor parametric uncertainties and convert the speed servo plant into a double-integrator model. Then, a fractional order proportional-derivative (PDμ) controller was adopted as the speed controller to provide the optimal step response performance for the servo system. A universal look-up table was established to estimate the derivative order of the PDμ controller, according to the optimal samples collected by an improved differential evolution algorithm. With the look-up table, the optimal PDμ controller can be tuned analytically. Simulation and experimental results show that the servo system using the composite control scheme can achieve optimal tracking performance and has robustness to the motor parametric uncertainties and disturbance torques.


2021 ◽  
Vol 11 (2) ◽  
pp. 546
Author(s):  
Jiajia Xie ◽  
Rui Zhou ◽  
Yuan Liu ◽  
Jun Luo ◽  
Shaorong Xie ◽  
...  

The high performance and efficiency of multiple unmanned surface vehicles (multi-USV) promote the further civilian and military applications of coordinated USV. As the basis of multiple USVs’ cooperative work, considerable attention has been spent on developing the decentralized formation control of the USV swarm. Formation control of multiple USV belongs to the geometric problems of a multi-robot system. The main challenge is the way to generate and maintain the formation of a multi-robot system. The rapid development of reinforcement learning provides us with a new solution to deal with these problems. In this paper, we introduce a decentralized structure of the multi-USV system and employ reinforcement learning to deal with the formation control of a multi-USV system in a leader–follower topology. Therefore, we propose an asynchronous decentralized formation control scheme based on reinforcement learning for multiple USVs. First, a simplified USV model is established. Simultaneously, the formation shape model is built to provide formation parameters and to describe the physical relationship between USVs. Second, the advantage deep deterministic policy gradient algorithm (ADDPG) is proposed. Third, formation generation policies and formation maintenance policies based on the ADDPG are proposed to form and maintain the given geometry structure of the team of USVs during movement. Moreover, three new reward functions are designed and utilized to promote policy learning. Finally, various experiments are conducted to validate the performance of the proposed formation control scheme. Simulation results and contrast experiments demonstrate the efficiency and stability of the formation control scheme.


Sign in / Sign up

Export Citation Format

Share Document