Effects of ascending and descending climbers on space elevator cable dynamics

2018 ◽  
Vol 145 ◽  
pp. 165-173 ◽  
Author(s):  
Yoji Ishikawa ◽  
Kiyotoshi Otsuka ◽  
Yoshiki Yamagiwa ◽  
Hinata Doi
2005 ◽  
Vol 128 (1) ◽  
pp. 66-78 ◽  
Author(s):  
W. D. Zhu ◽  
Y. Chen

The vibratory energy of a moving cable in an elevator increases in general during upward movement. A control method is presented to dissipate the energy associated with the lateral vibration of the cable. A novel experimental method is developed to validate the theoretical predictions for the uncontrolled and controlled lateral responses of a moving cable in a high-rise elevator. This includes the design and fabrication of a scaled elevator, experimental setup, and development of measurement and parameter estimation techniques. Experimental results show good agreement with the theoretical predictions.


1976 ◽  
Vol 6 (6) ◽  
pp. 475-480 ◽  
Author(s):  
J.M. Winget ◽  
R.L. Huston

Author(s):  
H. Ren ◽  
W. D. Zhu

A spatial discretization and substructure method is developed to calculate the dynamic responses of one-dimensional systems, which consist of length-variant distributed-parameter components such as strings, rods, and beams, and lumped-parameter components such as point masses and rigid bodies. The dependent variable, such as the displacement, of a distributed-parameter component is decomposed into boundary-induced terms and internal terms. The boundary-induced terms are interpolated from the boundary motions, and the internal terms are approximated by an expansion of trial functions that satisfy the corresponding homogeneous boundary conditions. All the matching conditions at the interfaces of the components are satisfied, and the expansions of the dependent variables of the distributed-parameter components absolutely and uniformly converge. The spatial derivatives of the dependent variables, which are related to the internal forces/moments, such as the axial forces, bending moments, and shear forces, can be accurately calculated. Assembling the component equations and the geometric matching conditions that arise from the continuity relations leads to a system of differential algebraic equations (DAEs). When some matching conditions are linear algebraic equations, some generalized coordinates can be represented by others so that the number of the generalized coordinates can be reduced. The methodology is applied to moving elevator cable-car systems in Part II of this work.


2013 ◽  
Vol 711 ◽  
pp. 327-332
Author(s):  
Yi Su ◽  
Zhen Zhang ◽  
Tao Zhang ◽  
Ming Li Yang ◽  
Mei Lin ◽  
...  

The detection mechanism of Magnetic Flux Leakage (MFL) Method of elevator cable is proposed. Using Gauss-Mercury method to analyze the influence of different factors that lift-off value, fracture width, broken wires number and diameter and depth all that based on the collecting experimental system of MFL signals. The method can be used to optimize the detection probe design and detection signal processing.


2009 ◽  
Vol 15 (7) ◽  
pp. 1049-1077 ◽  
Author(s):  
Lucia Faravelli ◽  
Filippo Ubertini

1984 ◽  
Vol 51 (4) ◽  
pp. 899-903 ◽  
Author(s):  
J. W. Kamman ◽  
R. L. Huston

A new automated procedure for obtaining and solving the governing equations of motion of constrained multibody systems is presented. The procedure is applicable when the constraints are either (a) geometrical (for example, “closed-loops”) or (b) kinematical (for example, specified motion). The procedure is based on a “zero eigenvalues theorem,” which provides an “orthogonal complement” array which in turn is used to contract the dynamical equations. This contraction, together with the constraint equations, forms a consistent set of governing equations. An advantage of this formulation is that constraining forces are automatically eliminated from the analysis. The method is applied with Kane’s equations—an especially convenient set of dynamical equations for multibody systems. Examples of a constrained hanging chain and a chain whose end has a prescribed motion are presented. Applications in robotics, cable dynamics, and biomechanics are suggested.


2010 ◽  
Vol 163-167 ◽  
pp. 4064-4071
Author(s):  
Chao Ying Zhou ◽  
Peng Xie ◽  
Wen Ying Ji

Rain-wind induced vibration (RWIV) is a violent oscillation that appears on cable stayed bridge under rainy weather. Many researchers agree that the rivulets (specially the upper one) play an important role during the vibration. In present work, the upper rivulet’s effect is focused. A circular cylinder with an arches attachment on its surface is modeled to take the place of cable- rivulets system section in RWIV. Using finite volume method (FVM), 3D Flow past the cylinder-arch model is simulated for subcritical Reynolds Number (Re, ≈6.8×104). Large Eddy Simulation (LES) method is drawn in as a closure of turbulence model. The attachment locating at different positions are calculated. The results show many differences between cylinder-arch model and bare circular cylinder, including force coefficients change dramatically and velocity distributions in wake zone vary remarkably. Responses of cylinder-arch system driven by aerodynamic forces are also studied. Fourth order Runge-Kutta Method is introduced to solve second order ODEs that describe the vibration of cylinder model. The first four modal response are calculated and then added to analyze cable oscillating properties.


Sign in / Sign up

Export Citation Format

Share Document