Prescribed performance based dual-loop control strategy for configuration keeping of partial space elevator in cargo transportation

2021 ◽  
Vol 189 ◽  
pp. 241-249
Author(s):  
Gefei Shi ◽  
Zheng H. Zhu
2014 ◽  
Vol 722 ◽  
pp. 182-189
Author(s):  
Li Gang Ma ◽  
Chang Le Xiang ◽  
Tian Gang Zou ◽  
Fei Hong Mao

The paper proposes a cascade control strategy of speed feedback in inner loop and temperature feedback in outer ring for hydro-viscous driven fan cooling system, and compares the simulation of PID and fuzzy PID. The simulation result shows that the double-loop control system while the response time longer, but much smaller overshoot, can achieve a good feedback to adjust the fan speed and temperature and realize stepless speed regulation of hydro-viscous driven fan cooling system under the premise of stability for fan speed and system temperature.


Author(s):  
William J. Emblom ◽  
Klaus J. Weinmann

This paper describes the development and implementation of closed-loop control for oval stamp forming tooling using MATLAB®’s SIMULINK® and the dSPACE®CONTROLDESK®. A traditional PID controller was used for the blank holder pressure and an advanced controller utilizing fuzzy logic combining a linear quadratic gauss controller and a bang–bang controller was used to control draw bead position. The draw beads were used to control local forces near the draw beads. The blank holder pressures were used to control both wrinkling and local forces during forming. It was shown that a complex, advanced controller could be modeled using MATLAB’s SIMULINK and implemented in DSPACE CONTROLDESK. The resulting control systems for blank holder pressures and draw beads were used to control simultaneously local punch forces and wrinkling during the forming operation thereby resulting in a complex control strategy that could be used to improve the robustness of the stamp forming processes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116323 ◽  
Author(s):  
Haitao Nie ◽  
Kehui Long ◽  
Jun Ma ◽  
Dan Yue ◽  
Jinguo Liu

2011 ◽  
Vol 71-78 ◽  
pp. 2089-2093 ◽  
Author(s):  
Qian Wang ◽  
Ming Xing Zhou ◽  
Bao Yi Wang

In order to fulfill future emission standards for middle and heavy-duty vehicles like state Ⅳ and Ⅴ, advanced measures on exhaust gas and engine functionality are required. Selective Catalytic Reduction (SCR) technology is the unique technology currently which can improve the emission and reduce fuel consumption simultaneously. Firstly the reductants and its chemical reactions, SCR system configurations and its working principle and urea dosing control strategy are introduced. Then tests are conducted on a diesel engine with SCR system at bench. The results of ESC cycle show that NOx emission is decreased by more than 67% with the open-loop control strategy. Additionally, the urea and fuel consumption and ammonia leakage have been compared and analyzed respectively, the experiment data indicates that the urea water solution consumption ratio is only 5.7% of fuel for this SCR system, while its average ammonia slip is below 5 ppm.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
He Wang ◽  
Xiaohu Wang ◽  
Jiahai Huang ◽  
Long Quan

Abstract The present research concentrates on the performance improvement of a two-stage proportional valve with internal hydraulic position feedback which is named as the Valvistor valve. In this paper, the performance constraint of this valve is identified and a novel electronic closed-loop control strategy with an integral-separation fuzzy proportional-integral-derivative controller is proposed to improve the valve performance, including the static characteristics and the dynamic characteristics. The results show that in the Valvistor valve, the comparison point and the feedback loop for the internal hydraulic position feedback is only in the main stage, while the input is in the pilot stage. This leads to the poor performance of this valve. The control strategy is very effective and the performance of the Valvistor valve is improved. With the control strategy, the error of the poppet displacement is reduced from 4.9% to 2.1% by adjusting the spool displacement in the pilot stage in real-time and the flow error is reduced from 5.3% to 2.3%. The dead zone of the poppet displacement and the flow is eliminated. The hysteresis is reduced from 5.3% to 2.6% and the linearity is improved. The overshoot is reduced from 0.06 to 0.02 mm and the settling time is reduced from 0.5 to 0.2 s. Moreover, the bandwidth is increased from 8 to 16 Hz.


Sign in / Sign up

Export Citation Format

Share Document