An Experimental Study for NOx - Emission Reduction with Urea-SCR Technology in Vehicular Diesel Engines

2011 ◽  
Vol 71-78 ◽  
pp. 2089-2093 ◽  
Author(s):  
Qian Wang ◽  
Ming Xing Zhou ◽  
Bao Yi Wang

In order to fulfill future emission standards for middle and heavy-duty vehicles like state Ⅳ and Ⅴ, advanced measures on exhaust gas and engine functionality are required. Selective Catalytic Reduction (SCR) technology is the unique technology currently which can improve the emission and reduce fuel consumption simultaneously. Firstly the reductants and its chemical reactions, SCR system configurations and its working principle and urea dosing control strategy are introduced. Then tests are conducted on a diesel engine with SCR system at bench. The results of ESC cycle show that NOx emission is decreased by more than 67% with the open-loop control strategy. Additionally, the urea and fuel consumption and ammonia leakage have been compared and analyzed respectively, the experiment data indicates that the urea water solution consumption ratio is only 5.7% of fuel for this SCR system, while its average ammonia slip is below 5 ppm.

Author(s):  
Pingen Chen ◽  
Qinghua Lin

The configuration and control of aftertreatment systems have a significant impact on their functionalities and emission control performance. The traditional aftertreatment system configurations, i.e., connections from one aftertreatment subsystem to another subsystem in series, are simple but generally do not yield the optimal aftertreatment system performance. New aftertreatment configurations, in conjunction with new engine and aftertreatment control, can significantly improve engine efficiency and emission reduction performance. However, new configuration design requires human intuition and in-depth knowledge of engine and aftertreatment system design and control. The purpose of this study is to develop a general systematic and computationally-efficient method which enables automated and simultaneous optimization of passive selective catalytic reduction (SCR) system architectures and the associated non-uniform cylinder-to-cylinder combustion (NUCCC) controls based on a newly proposed highly reconfigurable passive SCR model structure and integer partition theory. The proposed method is general enough to account for passive SCR systems with two or more TWC stages. We demonstrate through this case study that the optimized passive SCR configuration, in conjunction with the optimized NUCCC control, can reduce the NH3 specific fuel consumption by up to 21.90%.


Author(s):  
H. Jammoussi ◽  
S. Choura ◽  
E. M. Abdel-Rahman ◽  
H. Arafat ◽  
A. Nayfeh ◽  
...  

In this paper, an open-loop control strategy is proposed for maneuvering the angular motion of a Digital Micromirror Device (DMD). The control law is based on a micromirror model that accounts for both bending and torsion motions. The model characterizes two DMD configurations: with and without contact with the substrate. The device is actuated using an electrostatic field which is a nonlinear function of the states and input voltage. The proposed control strategy is a Zero Vibration (ZV) shaper. It overshoots the DMD to its desired final angle by appropriately varying two independent input voltages. Actuating voltages and switching times are determined to maneuver the DMD from −10° to +10° tilt angles while reducing the residual vibrations.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 132 ◽  
Author(s):  
Javier Velasco ◽  
Oscar Barambones ◽  
Isidro Calvo ◽  
Joseba Zubia ◽  
Idurre Saez de Ocariz ◽  
...  

In piezoelectric actuators (PEAs), which suffer from inherent nonlinearities, sliding mode control (SMC) has proven to be a successful control strategy. Nonetheless, in micropositioning systems with time delay, integral proportional control (PI), and SMC, feedback control schemes have a tendency to overcompensate and, consequently, high controller gains must be rejected. This may produce a slow and inaccurate response. This paper presents a novel control strategy that deals with time-delay micropositioning systems aimed at achieving precise positioning by combining an open-loop control with a modified SMC scheme. The proposed SMC with dynamical correction (SMC-WDC) uses the dynamical system model to adapt the SMC inputs and avoid undesirable control response caused by delays. In order to develop the SMC-WDC scheme, an exhaustive analysis on the micropositioning system was first performed. Then, a mixed control strategy, combining inverse open-loop control and SMC-WDC, was developed. The performance of the presented control scheme was analyzed and compared experimentally with other control strategies (i.e., PI and SMC with saturation and hyperbolic functions) using different reference signals. It was found that the SMC-WDC strategy presents the best performance, that is, the fastest response and highest accuracy, especially against sudden changes of reference setpoints (frequencies >10 Hz). Additionally, if the setpoint reference frequencies are higher than 10 Hz, high integral gains are counterproductive (since the control response increases the delay), although if frequencies are below 1 Hz the integral control delay does not affect the system’s accuracy. The SMC-WDC proved to be an effective strategy for micropositioning systems, dealing with time delay and other uncertainties to achieve the setpoint command fast and precisely without chattering.


1997 ◽  
Vol 119 (2) ◽  
pp. 298-300 ◽  
Author(s):  
C. R. Knospe ◽  
S. M. Tamer ◽  
S. J. Fedigan

Experimental results have recently demonstrated that an adaptive open-loop control strategy can be highly effective in the suppression of the unbalance induced vibration of rotors supported in active magnetic bearings. A synthesis method is presented for determining the adaptive law’s gain matrix such that the adaptation’s stability and steady-state performance are robust with respect to structured uncertainty.


2013 ◽  
Vol 860-863 ◽  
pp. 770-773
Author(s):  
You Hong Xiao ◽  
Wei Zheng ◽  
Yu Shan Jin ◽  
Xin Na Tian

In this paper, the model of SCR after-treatment system is established by the software MATLAB and the control strategy for the system is studied also. Based on Eley-rideal mechanism, four major chemical reactions including the adsorption of ammonia, desorption of ammonia, selective catalytic reduction and oxidation of adsorbed ammonia are selected to study the SCR control strategy. Based on the energy conservation law, the equation calculating the temperature of the layered model is derived. Combined with the equations of chemical reaction process, a mathematical model of SCR catalytic converter is established. To achieve a high NOXreduction efficiency of SCR system, the reasonable and efficacious control strategies for the micro-element models of SCR catalytic is simulated, which including the feedback control strategy based on the feed-forward controller and the PID control strategy.


Author(s):  
Matheus Garcia Soares ◽  
Afonso Bernardino Almeida Junior ◽  
Thiago Berger Canuto Alves ◽  
Luciano Martins Neto

AbstractThis work presents the improvement of an open loop control strategy for linear induction motors operating at low speeds. The improvement is provided through the application of genetic algorithms in determining unbalance factors of the supply voltages of the linear motor. For this, a computational model of the linear motor was used as the evaluation function. The computational model was developed based on the equations of the linearized induction motor. The proposed methodology is validated through the comparison between computational results and experimental data performed in a linear motor prototype. This methodology allows to evaluate the influence of the unbalance of the supply voltages for linear motors working at low speeds.


Author(s):  
Jinbiao Ning ◽  
Fengjun Yan

Urea-based selected catalytic reduction (SCR) systems are effective ways in diesel engine after-treatment systems to meet increasingly stringent emission regulations. To achieve high NOx reduction efficiency and low NH3 slip, the control of the SCR system becomes more challenging, especially in transient operating conditions with model uncertainties. To effectively address this issue, this paper proposed a compound control strategy with a switching mechanism between an active disturbance rejection (ADR) controller and a zero-input controller. The ADR controller estimates and rejects the total (internal and external) disturbances from the SCR system when the exhaust gas temperature is high and its variation is small. The zero-input controller is used to lower ammonia surface coverage ratio to avoid high ammonia slip when exhaust gas temperature suddenly rises. The proposed control strategy is validated through a high-fidelity GT-Power simulation for a light-duty diesel engine over steady states and federal test procedure (FTP-75) test cycle. Its effectiveness is demonstrated especially in rapidly transient conditions with model uncertainties.


Sign in / Sign up

Export Citation Format

Share Document