Modeling the dynamic recrystallization under multi-stage hot deformation

2004 ◽  
Vol 52 (15) ◽  
pp. 4659-4668 ◽  
Author(s):  
G. Kugler ◽  
R. Turk
2013 ◽  
Vol 310 ◽  
pp. 117-123
Author(s):  
Xin Tong Wu ◽  
Zhao Yang Jin ◽  
Juan Liu ◽  
Xin Huang

In order to improve the understanding of the rheological behavior of magnesium alloy AZ31B under multi-stage hot deformation, a series of isothermal compressing experiments with height reduction of 60% were performed at the temperatures of 250°C, 300°C, 350°C and 400°C and the strain rates of 0.01 s−1and 0.1 s−1 on a Gleeble 1500 thermo-mechanical simulator. The effects of temperature (jump), strain rate (jump), deformation degree and deformation interval time on the flow stress characteristics are investigated and discussed. It is shown that in the dual-stage deformation process with temperature jump or strain rate jump, values of peak stress and peak strain at the second-stage are lower than those at single-stage. The reason for this change is due to the deformation stored energy still retained in the material after its release during the first-stage deformation and deformation interval, such as dynamic recrystallization, meta-dynamic recrystallization, static recovery and static recrystallization The deformation resistance of the multi-stage deformation of AZ31B can be reduced by increasing the deformation degree at the first-stage or the deformation interval because it leads to adequate release of deformation stored energy, which improves the plastic formability of magnesium alloy.


2021 ◽  
Vol 56 (14) ◽  
pp. 8762-8777
Author(s):  
Yahui Han ◽  
Changsheng Li ◽  
Jinyi Ren ◽  
Chunlin Qiu ◽  
Shuaishuai Chen ◽  
...  

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Munir Al-Saadi ◽  
Wangzhong Mu ◽  
Christopher N. Hulme-Smith ◽  
Fredrik Sandberg ◽  
Pär G. Jönsson

Alloy 825 is widely used in several industries, but its useful service life is limited by both mechanical properties and corrosion resistance. The current work explores the effect of the addition of magnesium on the recrystallization and mechanical behavior of alloy 825 under hot compression. Compression tests were performed under conditions representative of typical forming processes: temperatures between 1100 and 1250 °C and at strain rates of 0.1–10 s−1 to a true strain of 0.7. Microstructural evolution was characterized by electron backscattered diffraction. Dynamic recrystallization was found to be more prevalent under all test conditions in samples containing magnesium, but not in all cases of conventional alloy 825. The texture direction ⟨101⟩ was the dominant orientation parallel to the longitudinal direction of casting (also the direction in which the samples were compressed) in samples that contained magnesium under all test conditions, but not in any sample that did not contain magnesium. For all deformation conditions, the peak stress was approximately 10% lower in material with the addition of magnesium. Furthermore, the differences in the peak strain between different temperatures are approximately 85% smaller if magnesium is present. The average activation energy for hot deformation was calculated to be 430 kJ mol−1 with the addition of magnesium and 450 kJ mol−1 without magnesium. The average size of dynamically recrystallized grains in both alloys showed a power law relation with the Zener–Hollomon parameter, DD~Z−n, and the exponent of value, n, is found to be 0.12. These results can be used to design optimized compositions and thermomechanical treatments of alloy 825 to maximize the useful service life under current service conditions. No experiments were conducted to investigate the effects of such changes on the service life and such experiments should now be performed.


2020 ◽  
Vol 22 (10) ◽  
pp. 2000098
Author(s):  
Vladimir Torganchuk ◽  
Olga Rybalchenko ◽  
Sergey Vladimirovich Dobatkin ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

Sign in / Sign up

Export Citation Format

Share Document