Micrograph evidence of meniscus solidification and sub-surface microstructure evolution in continuous-cast ultralow-carbon steels

2006 ◽  
Vol 54 (4) ◽  
pp. 1165-1173 ◽  
Author(s):  
J. Sengupta ◽  
H.-J. Shin ◽  
B.G. Thomas ◽  
S.-H. Kim
Author(s):  
Wentao Qin ◽  
Dorai Iyer ◽  
Jim Morgan ◽  
Carroll Casteel ◽  
Robert Watkins ◽  
...  

Abstract Ni(5 at.%Pt ) films were silicided at a temperature below 400 °C and at 550 °C. The two silicidation temperatures had produced different responses to the subsequent metal etch. Catastrophic removal of the silicide was seen with the low silicidation temperature, while the desired etch selectivity was achieved with the high silicidation temperature. The surface microstructures developed were characterized with TEM and Auger depth profiling. The data correlate with both silicidation temperatures and ultimately the difference in the response to the metal etch. With the high silicidation temperature, there existed a thin Si-oxide film that was close to the surface and embedded with particles which contain metals. This thin film is expected to contribute significantly to the desired etch selectivity. The formation of this layer is interpreted thermodynamically.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 862 ◽  
Author(s):  
Maribel Arribas ◽  
Teresa Gutiérrez ◽  
Eider Del Molino ◽  
Artem Arlazarov ◽  
Irene De Diego-Calderón ◽  
...  

In this work, four low carbon steels with different contents of Mn and Ni were heat treated by quenching and partitioning (Q&P) cycles where high partitioning temperatures, in the range of 550 °C–650 °C, were applied. In order to elucidate the effect of applying these high partitioning temperatures with respect to more common Q&P cycles, the materials were also heat treated considering a partitioning temperature of 400 °C. The microstructure evolution during the Q&P cycles was studied by means of dilatometry tests. The microstructural characterization of the treated materials revealed that austenite retention strongly depended on the alloy content and partitioning conditions. It was shown that the occurrence of austenite reverse transformation (ART) in the partitioning stage in some of the alloys and conditions was a very effective mechanism to increase the austenite content in the final microstructure. However, the enhancement of tensile properties achieved by the application of high partitioning temperature cycles was not significant.


Wear ◽  
2020 ◽  
Vol 448-449 ◽  
pp. 203217 ◽  
Author(s):  
Yuda Chen ◽  
Ruiming Ren ◽  
Xiujuan Zhao ◽  
Chunhuan Chen ◽  
Rui Pan

2017 ◽  
Vol 682 ◽  
pp. 370-375 ◽  
Author(s):  
Masaki Tanaka ◽  
Kenta Matsuo ◽  
Nobuyuki Yoshimura ◽  
Genichi Shigesato ◽  
Manabu Hoshino ◽  
...  

Author(s):  
Bo Mao ◽  
Yiliang Liao ◽  
Bin Li

Abstract In this paper, the surface microstructure evolution of an AZ31B magnesium (Mg) alloy during laser shock peening (LSP) was investigated. Particular attention was paid to the deformation twinning behavior, which plays an important role in the mechanical properties of Mg alloys. The effect of laser intensity on the twinning distribution was investigated. Twin-twin interactions during LSP process were characterized. The mechanism responsible for the formation of gradient twinning microstructure and twinning-induced hardening effect were discussed.


Sign in / Sign up

Export Citation Format

Share Document