Critical comparison of two independent measurements of residual stress in an electron-beam welded uranium cylinder: Neutron diffraction and the contour method

2011 ◽  
Vol 59 (3) ◽  
pp. 864-873 ◽  
Author(s):  
D.W. Brown ◽  
T.M. Holden ◽  
B. Clausen ◽  
M.B. Prime ◽  
T.A. Sisneros ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1298
Author(s):  
Shuyan Zhang ◽  
Zhuozhi Fan ◽  
Jun Li ◽  
Shuwen Wen ◽  
Sanjooram Paddea ◽  
...  

In this study, a mock-up of a nuclear safe-end dissimilar metal weld (DMW) joint (SA508-3/316L) was manufactured. The manufacturing process involved cladding and buttering of the ferritic steel tube (SA508-3). It was then subjected to a stress relief heat treatment before being girth welded together with the stainless steel tube (316L). The finished mock-up was subsequently machined to its final dimension. The weld residual stresses were thoroughly characterised using neutron diffraction and the contour method. A detailed finite element (FE) modelling exercise was also carried out for the prediction of the weld residual stresses resulting from the manufacturing processes of the DMW joint. Both the experimental and numerical results showed high levels of tensile residual stresses predominantly in the hoop direction of the weld joint in its final machined condition, tending towards the OD surface. The maximum hoop residual stress determined by the contour method was 500 MPa, which compared very well with the FE prediction of 467.7 Mpa. Along the neutron scan line at the OD subsurface across the weld joint, both the contour method and the FE modelling gave maximum hoop residual stress near the weld fusion line on the 316L side at 388.2 and 453.2 Mpa respectively, whereas the neutron diffraction measured a similar value of 480.6 Mpa in the buttering zone near the SA508-3 side. The results of this research thus demonstrated the reasonable consistency of the three techniques employed in revealing the level and distribution of the residual stresses in the DMW joint for nuclear applications.


1997 ◽  
Vol 119 (2) ◽  
pp. 137-141 ◽  
Author(s):  
J. H. Root ◽  
C. E. Coleman ◽  
J. W. Bowden ◽  
M. Hayashi

Three-dimensional scans of residual stress within intact weldments provide insight into the consequences of various welding techniques and stress-relieving procedures. The neutron diffraction method for nondestructive evaluation of residual stresses has been applied to a circumferential weld in a ferritic steel pipe of outer diameter 114 mm and thickness 8.6 mm. The maximum tensile stresses, 250 MPa in the hoop direction, are found at mid-thickness of the fusion zone. The residual stresses approach zero within 20 mm from the weld center. The residual stresses caused by welding zirconium alloy components are partially to blame for failures due to delayed hydride cracking. Neutron diffraction measurements in a GTA-welded Zr-2.5Nb plate have shown that heat treatment at 530°C for 1 h reduces the longitudinal residual strain by 60 percent. Neutron diffraction has also been used to scan the residual stresses near circumferential electron beam welds in irradiated and unirradiated Zr-2.5Nb pressure tubes. The residual stresses due to electron beam welding appear to be lower than 130 MPa, even in the as-welded state. No significant changes occur in the residual stress pattern of the electron-beam welded tube, during a prolonged exposure to thermal neutrons and the temperatures typical of an operating nuclear reactor.


Author(s):  
Mark Turski ◽  
Lyndon Edwards ◽  
Jon James ◽  
Peter J. Bouchard ◽  
Mike Smith ◽  
...  

This paper describes the measurement of longitudinal residual stresses within a specially designed 200×180×25 mm single groove weld specimen. The purpose of these measurements was to quantify the residual stress field arising from a single stringer weld bead laid down within the constraint of a groove in order to validate finite element simulations of the welding process. Measurements were made over the cross section at the mid-bead length, utilising the relatively new Contour method and neutron diffraction. Non destructive neutron diffraction measurements were made using ENGIN-X, the engineering spectrometer at the ISIS facility of the Rutherford Appleton Laboratory (UK). The Contour method measurement was applied destructively at the Open University (UK), producing a detailed full-field residual stress map. Results from these measurements indicate a peak tensile longitudinal residual stress of ∼300 MPa within the parent material adjacent to the weld bead. Good agreement is found between both techniques.


Author(s):  
Matthew Kerr ◽  
David L. Rudland ◽  
Michael B. Prime ◽  
Hunter Swenson ◽  
Miles A. Buechler ◽  
...  

Time-of-flight neutron diffraction and contour method residual stress measurements were conducted at Los Alamos National Lab (LANL) on a lab sized plate specimen (P4) from Phase I of the joint U.S. Nuclear Regulatory Commission and Electric Power Research Institute Weld Residual Stress (NRC/EPRI WRS) program. The specimen was fabricated from a 304L stainless steel plate containing a seven pass Alloy 82 groove weld, restrained during welding and removed from the restraint for residual stress characterization. This paper presents neutron diffraction and contour method results, and compares these experimental stress measurements to a WRS Finite Element (FE) model. Finally details are provided on the procedure used to calculate the residual stress distribution in the restrained or as welded condition in order to allow comparison to other residual stress data collected as part of the EPRI lead Phase I WRS program.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Matthew Kerr ◽  
Michael B. Prime ◽  
Hunter Swenson ◽  
Miles A. Buechler ◽  
Michael Steinzig ◽  
...  

Time-of-flight neutron diffraction, contour method, and surface hole drilling residual stress measurements were conducted at Los Alamos National Lab (LANL) on a lab sized plate specimen (P4) from phase 1 of the joint U.S. Nuclear Regulatory Commission and Electric Power Research Institute Weld Residual Stress (NRC/EPRI WRS) program. The specimen was fabricated from a 304L stainless steel plate containing a seven pass alloy 82 groove weld, restrained during welding and removed from the restraint for residual stress characterization. This paper presents neutron diffraction and contour method results, and compares these experimental stress measurements to a WRS finite element (FE) model. Finally, details are provided on the procedure used to calculate the residual stress distribution in the restrained or as welded condition in order to allow comparison to other residual stress data collected as part of phase 1 of the WRS program.


2013 ◽  
Vol 213 (12) ◽  
pp. 2323-2328 ◽  
Author(s):  
Daniel F.O. Braga ◽  
Harry E. Coules ◽  
Thilo Pirling ◽  
Valentin Richter-Trummer ◽  
Paul Colegrove ◽  
...  

2006 ◽  
Vol 524-525 ◽  
pp. 671-676 ◽  
Author(s):  
M. Kartal ◽  
Mark Turski ◽  
Greg Johnson ◽  
Michael E. Fitzpatrick ◽  
S. Gungor ◽  
...  

This paper describes the measurement of longitudinal residual stresses within specially designed 200x180x25mm groove weld specimens. The purpose of these measurements was to compare the residual stress field arising from single and multi-pass weld beads laid down within the constraint of a groove in order to validate finite element simulations of the welding process. Measurements were made over the cross section at the mid-bead length, utilising the relatively new Contour method and neutron diffraction. Results from these measurements indicate a larger peak tensile longitudinal residual stresses within the weld region of the multi-pass weld sample. Good agreement is found between both techniques.


Sign in / Sign up

Export Citation Format

Share Document