scholarly journals Experimental Characterisation and Numerical Modelling of Residual Stresses in a Nuclear Safe-End Dissimilar Metal Weld Joint

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1298
Author(s):  
Shuyan Zhang ◽  
Zhuozhi Fan ◽  
Jun Li ◽  
Shuwen Wen ◽  
Sanjooram Paddea ◽  
...  

In this study, a mock-up of a nuclear safe-end dissimilar metal weld (DMW) joint (SA508-3/316L) was manufactured. The manufacturing process involved cladding and buttering of the ferritic steel tube (SA508-3). It was then subjected to a stress relief heat treatment before being girth welded together with the stainless steel tube (316L). The finished mock-up was subsequently machined to its final dimension. The weld residual stresses were thoroughly characterised using neutron diffraction and the contour method. A detailed finite element (FE) modelling exercise was also carried out for the prediction of the weld residual stresses resulting from the manufacturing processes of the DMW joint. Both the experimental and numerical results showed high levels of tensile residual stresses predominantly in the hoop direction of the weld joint in its final machined condition, tending towards the OD surface. The maximum hoop residual stress determined by the contour method was 500 MPa, which compared very well with the FE prediction of 467.7 Mpa. Along the neutron scan line at the OD subsurface across the weld joint, both the contour method and the FE modelling gave maximum hoop residual stress near the weld fusion line on the 316L side at 388.2 and 453.2 Mpa respectively, whereas the neutron diffraction measured a similar value of 480.6 Mpa in the buttering zone near the SA508-3 side. The results of this research thus demonstrated the reasonable consistency of the three techniques employed in revealing the level and distribution of the residual stresses in the DMW joint for nuclear applications.

Author(s):  
Carsten Ohms ◽  
Dimitrios E. Katsareas ◽  
Robert C. Wimpory ◽  
Peter Hornak ◽  
Anastasius G. Youtsos

Residual stresses in welded structural components can significantly compromise their performance and lifetime. Non-destructive measurement of such stresses remains a challenging task and neutron diffraction, in principle similar to X-ray diffraction, is used in this study. At the High Flux Reactor (HFR) of the Joint Research Centre (JRC), Petten, the Netherlands, a facility is available to investigate residual stresses in components of up to 1000 kg — the Large Component Neutron Diffraction Facility (LCNDF). Residual stress measurements in a dissimilar metal weld are presented. The specimen investigated is a full-scale mock-up of a pressure vessel to primary piping bi-metallic weld. The specimen wall thickness is 51 mm. A key issue in applying neutron diffraction to welds is the reliable estimation of the stress-free lattice spacing in the heat affected zones and weld pool. The description of the test procedure and the resulting strain/stress data are presented in this paper. Based on this a predictive FEM model has been calibrated. Comparison of test data and numerical results clearly shows that the neutron diffraction method as applied at the HFR, although touching its limits in this study, is still capable of yielding 3-D stress analysis data in steel specimens of more than 50 mm thickness.


Author(s):  
Dongxiao Qiao ◽  
Wei Zhang ◽  
Zhili Feng

Weld residual stress is a major driving force for initiation and growth of primary water stress corrosion cracking (PWSCC), which is a critical challenge for weld integrity of reactor pressure vessel nozzles in nuclear industry. Predicting weld residual stresses for the purpose of understanding and mitigating PWSCC requires the knowledge of material constitutive rule especially strain hardening behavior over a wide range of temperatures. Though it is adequate for describing deformation at low temperature, the conventional, rate-independent, elastic-plastic constitutive rule falls short in predicting the strong microstructure-mechanical interaction such as the softening due to recovery (dislocation annihilation and realignment) and recrystallization at elevated temperature in welding. To quantify the extent of softening under temperature and strain conditions relevant to welding, a framework has been developed by combining advanced experimental techniques and finite element modeling. First, physical simulation in a Gleeble testing machine is used to simulate the temperature transients typical of dissimilar metal weld by subjecting round tensile bar shaped specimens to rapid heating and cooling. Second, the digital image correlation (DIC) technique is used to map the non-uniform strain field and extract local strain history needed for accurately determining the true stress vs. true strain curve of softened material. Third, the thermally-mechanically processed specimens are characterized metallographically to correlate the microstructure changes to the measured stress-strain behavior. Finally, a thermal-stress finite element model of three-bar frame is used to study the effect of softening on the predicted weld residual stresses. As a first step toward developing the much-needed, comprehensive material constitutive relation database for dissimilar metal weld, the framework has been applied to study AISI 304L austenitic stainless steel. The extent of softening due to different duration of high-temperature exposure is studied and its influence on final residual stresses is discussed.


Author(s):  
Doug Killian

Although numerical welding simulation is now commonly used in the nuclear industry to predict residual stresses in reactor vessels and associated piping components, there are currently no universally accepted guidelines for performing such analysis. Moreover, due to the complexity of the calculations and varying analytical procedures among analysts, there remains a need to validate predictions of residual stress against benchmark studies. As part of an industry initiative to manage the degradation of dissimilar metal welds in pressurized water reactor piping that are susceptible to primary water stress corrosion cracking, the U.S Nuclear Regulatory Commission embarked on a multi-phased program to validate welding residual stress models. The aim of Phase II of this program is to obtain measured residual stresses from a pressurizer surge nozzle dissimilar metal weld mockup for use in comparisons with numerically predicted stresses. This paper presents results of finite element analysis for various stages during the fabrication of a 14–inch pressurizer surge nozzle mockup, including an Alloy 82 dissimilar metal weld between a stainless steel safe end and carbon steel nozzle, an inside surface weld repair (back weld) and fill-in weld (weld build-up), and a stainless steel “field” weld attaching a section of straight pipe to the safe end. The NRC validation program was structured to allow participants to first calculate results using their own material properties, and then tune their welding simulations to thermocouple data. This was followed by reanalysis using NRC-supplied material properties. The program was conducted as a round robin analysis among an international group of participants and formatted as a blind validation project wherein results were submitted to the NRC prior to receipt of thermocouple and material property data. Results were obtained for both kinematic and isotropic hardening rules to study the effect of these two extreme measures of material characterization on the development of residual stress. Predicted stresses are then compared to measured stress data obtained by the deep-hole drilling technique at multiple locations through the thickness of the weld. The NRC residual stress model validation project serves as a valuable contribution to the understanding of how residual stresses are developed in dissimilar metal welds. The correlation of calculated residual stresses with measured data from a relevant mockup also serves to increase confidence in predicting crack growth in these primary pressure boundary welds by removing much of the uncertainty previously associated with residual stress input to crack growth analysis.


Author(s):  
Florian Obermeier ◽  
Stéphan Courtin ◽  
Tomas Nicak ◽  
Elisabeth Keim

In the nuclear industry narrow gap welding techniques are used to perform junctions between ferritic low alloy steel heavy section components and austenitic stainless steel piping systems. The residual stresses in Dissimilar Metals Welds (DMW) may influence the lifetime and functionality of the welded components. In Pressurized Water Reactor (PWR) piping systems, weld residual stresses in particular increased the susceptibility to primary water stress corrosion cracking (PWSCC) in the past. It is therefore necessary to develop and validate methods for a reliable residual stress and distortion prediction. Numerical welding simulations for predicting residual stresses are commonly used in nuclear industry and their development is progressing fast during the recent years. As part of the European project STYLE — Structural Integrity for Lifetime Management — a case study was launched to assess the capability of such simulations. The mock-up in this case study is provided by AREVA NP SAS. It is a pipe with a narrow gap dissimilar metal weld. The pipe thickness is about 40 mm and the outer diameter is 352 mm after final machining. In this assembly a 316L austenitic pipe is welded to an A508 Class 3 ferritic pipe by means of Alloy 52 Gas Tungsten Arc (GTA) narrow gap weld which is representative for PWR primary circuit piping. This mock-up is in the scope of a continuation of the ADIMEW – Assessment of Aged Piping Dissimilar Metal Weld Integrity - project and deals with the improvement of the assessment for DMW and Leak-before-break (LBB) procedures. The fracture test on this mock-up is planed to be performed at 300 °C with an initial through-wall defect. Apart from the LBB demonstration this mock-up is also dedicated for the validation of the applied fracture mechanics approach, extension of material data basis and validation of the weld simulation procedures applied within AREVA. This paper presents the results of the finite element residual stress analysis related to this STYLE narrow gap weld case study. The two finite element codes ABAQUS and SYSWELD were used to predict the weld residual stresses and the shrinkage in axial direction. The major difference between the here presented methods is that SYSWELD accounts for phase transformation and the method used with ABAQUS does not. The results are compared between each other and with data obtained by deep-hole drilling techniques (DHD) at several locations.


Author(s):  
Xinjian Duan ◽  
Andrew Glover ◽  
Dongmei Sun ◽  
Sanjooram Paddea

The dissimilar metal welds between the Inconel 600 flow element and the SA-106 Grade B carbon pipe with Alloy 82 or Alloy 182 filler material of some CANDU® designs have been identified as being susceptible to Primary Water Stress Corrosion Cracking (PWSCC). Initiation and growth of PWSCC in a Dissimilar Metal Weld (DMW) are driven primarily by Welding Residual Stresses (WRS). The present paper focuses on the experimental study of weld residual stress distribution in manually and mechanically fabricated DMWs with emphasis on the effect of repair. A series of DMW samples are firstly fabricated in accordance with the original welding procedures for those DMWs in the field, which were fabricated in 1970s and 1980s. Multiple thermocouples were used to record the temperature evolution during the entire welding process. These samples were then examined by ASME qualified personnel in accordance with the requirements for Class 1 weld in Article 9 of Section V of ASME BVPC using Visual Testing (VT) and Radiography Testing (RT). Repair was then performed in some samples, and further NDE examinations were performed. The qualified samples (with and without repair) were finally subject to destructive weld residual stress measurement using contour method. It is observed that weld repair dramatically changes the distribution of weld residuals tress. The use of a constant through-thickness WRS of 60,000 psi (415 MPa) is justified as the bounding case.


2005 ◽  
Vol 490-491 ◽  
pp. 53-61 ◽  
Author(s):  
Dimitrios Elias Katsareas ◽  
Anastasius Youtsos

Dissimilar metal welds are commonly found in the primary piping of pressurized water nuclear reactor power plants. The safety assessment practice for such welds requires residual stresses to be taken into consideration. In the present paper the finite element method is utilized for the simulation of the welding process and prediction of the residual stress field in a dissimilar metal weld pipe joint. Although it is common practice to develop in-house finite element codes for weld simulation, the ANSYS commercial finite element code is selected. This is mainly due to the fact that industry focuses on commercial software, since residual stress analysis procedures based on them can be readily transferred to industrial applications. A simplified 2-D axi-symmetric model, in which residual stresses are produced due to the thermo-mechanical properties mismatch during cooling of the weld, is compared with a detailed model in which the complete multi-pass welding procedure is simulated. The latter incorporates the “birth & death of elements” technique, temperature dependant material properties and kinematic hardening material behavior. The aim of this comparison is to establish the degree of model detail and complexity, necessary to obtain satisfactory results and consequently to define a golden rule between computational cost and practically accurate predictions. Identifying the specific simulation parameters and variables, that have the highest impact on the accuracy of the computed results, is also important. It is concluded that, a bead-by-bead or lump-by-lump detailed simulation is necessary in order to obtain reasonably accurate residual stresses that cannot be predicted by a simplified model. A general conclusion is that the proposed method, being simple in implementation and cost effective concerning model complexity and analysis time, is a potential weld residual stress prediction tool.


Author(s):  
Francis H. Ku ◽  
Pete C. Riccardella ◽  
Aparna Alleshwaram ◽  
Eric Willis

Finite element weld residual stress analyses are performed to investigate the effectiveness of a newly proposed repair option for primary water stress corrosion cracking (PWSCC) in dissimilar metal welds in PWRs: Excavate and Weld Repair (EWR). Analyses are performed on a 30″ (762mm) outside diameter (OD) and 3″ (76mm) thick stainless steel pipe connected to a low alloy steel nozzle with a dissimilar metal weld (DMW). Eight EWR cases are analyzed to evaluate the sensitivities in weld residual stresses due to variations in the width and depth of the EWR, including cases with and without a thin weld cap on top of the DMW. The results demonstrate that a wide EWR that extends beyond the original width of the DMW provides the maximum residual stress benefits to the DMW, in terms of reducing the as-welded residual stresses. It is also found that the presence of the weld cap yields only marginal residual stress benefits.


Author(s):  
A. Blouin ◽  
S. Chapuliot ◽  
S. Marie ◽  
J. M. Bergheau ◽  
C. Niclaeys

One important part of the integrity demonstration of large ferritic components is based on the demonstration that they could never undergo brittle fracture. Connections between a ferritic component and an austenitic piping (Dissimilar Metal Weld — DMW) have to respect these rules, in particular the Heat Affected Zone (HAZ) created by the welding process and which encounters a brittle-to-ductile transition. Within that frame, the case considered in this article is a Ni base alloy narrow gap weld joint between a ferritic pipe (A533 steel) and an austenitic pipe (316L stainless steel). The aim of the present study is to show that in the same loading conditions, the weld joint is less sensitive to the brittle fracture than the surrounding ferritic part of the component. That is to say that the demonstration should be focused on the ferritic base metal which is the weakest material. The bases of this study rely on a stress-based criterion developed by Chapuliot et al., using a threshold stress (σth) below which the cleavage cannot occur. This threshold stress can be used to define the brittle crack occurrence probability, which means it is possible to determine the highest loading conditions without any brittle fracture risk.


Author(s):  
Bernadett Spisák ◽  
Zoltán Bézi ◽  
Szabolcs Szávai

Welding is accompanied by the presence of weld residual stresses, which in case of dissimilar metal welds even with post weld heat treatment cannot be removed completely therefore they should be considered when assessing possible welding defects. The measurement of residual stress in metal weld is a very complex procedure and also in the investigated case could not be carried out as it is the part of a working plant. However, by modelling these processes, the residual stresses and deformation of the components caused by this manufacturing method can be determined. It is important to calculate these values as accurately as possible to determine the maximum load capacity of the structure. The structure under examination was the dissimilar metal weld of a VVER-440 steam generator. 2D simulations were performed, where temperature and phase-dependent material properties were implemented. Different loading scenarios were considered in the numerical analysis. The results can be useful to determine the real loading conditions of a given component and can be used to predict stress corrosion crack initiation locations, as well as to evaluate the lifetime and failure mode prediction of welded joints.


Sign in / Sign up

Export Citation Format

Share Document