scholarly journals Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion

2018 ◽  
Vol 152 ◽  
pp. 200-214 ◽  
Author(s):  
Fan Zhang ◽  
Lyle E. Levine ◽  
Andrew J. Allen ◽  
Mark R. Stoudt ◽  
Greta Lindwall ◽  
...  
2020 ◽  
Vol 35 ◽  
pp. 101282
Author(s):  
Runbo Jiang ◽  
Amir Mostafaei ◽  
Ziheng Wu ◽  
Ann Choi ◽  
Pin-Wen Guan ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4930
Author(s):  
Jinghao Xu ◽  
Hans Gruber ◽  
Ru Lin Peng ◽  
Johan Moverare

An experimental printable γ′-strengthened nickel-based superalloy, MAD542, is proposed. By process optimization, a crack-free component with less than 0.06% defect was achieved by laser powder bed fusion (LPBF). After post-processing by solution heat treatment, a recrystallized structure was revealed, which was also associated with the formation of annealing twins. After the aging treatment, 60–65% γ′ precipitates were obtained with a cuboidal morphology. The success of printing and post-processing the new MAD542 superalloy may give new insights into alloy design approaches for additive manufacturing.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Felix Clemens Ewald ◽  
Florian Brenne ◽  
Tobias Gustmann ◽  
Malte Vollmer ◽  
Philipp Krooß ◽  
...  

In order to overcome constraints related to crack formation during additive processing (laser powder bed fusion, L-BPF) of Fe-Mn-Al-Ni, the potential of high-temperature L-PBF processing was investigated in the present study. The effect of the process parameters on crack formation, grain structure, and phase distribution in the as-built condition, as well as in the course of cyclic heat treatment was examined by microstructural analysis. Optimized processing parameters were applied to fabricate cylindrical samples featuring a crack-free and columnar grained microstructure. In the course of cyclic heat treatment, abnormal grain growth (AGG) sets in, eventually promoting the evolution of a bamboo like microstructure. Testing under tensile load revealed a well-defined stress plateau and reversible strains of up to 4%.


Sign in / Sign up

Export Citation Format

Share Document